Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 25(16): e202400219, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38726706

RESUMEN

An eutectic mixture of tetrabutylammonium bromide and octanol in the molar ratio 1-10 exhibited a melting point of -17 °C. This system was investigated by means of infrared spectroscopy, in the liquid and in the solid state. Classical molecular dynamics was performed to study the fine details of the hydrogen bond interactions established in the mixture. Both octanol and the mixtures displayed an almost featureless far-infrared spectrum in the liquid state but it becomes highly structured in the solid phase. DFT calculations suggest that new vibrational modes appearing in the mixture at low temperatures may be related to the population of the higher energy conformers of the alcohol. Mid-infrared spectroscopy measurements evidenced no shift of the CH stretching bands in the mixture compared to the starting materials, while the OH stretching are blue shifted by a few cm-1. Consistently, molecular dynamics provides a picture of the mixture in which part of the hydrogen bonds (HB) of pure octanol is replaced by weaker HB formed with the Br anion. Due to these interactions the ionic couple becomes more separated. In agreement with this model, the lengths of all HB are much larger than those observed in mixtures containing acids reported in previous studies.

2.
J Phys Chem B ; 128(3): 857-870, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38224560

RESUMEN

We present a study of several mixtures obtained by the mixing of two organic acetate-based salts (choline acetate, ChAc, or tetrabutylammonium acetate, TBAAc) with three different natural organic acids (ascorbic acid, AA, citric acid, CA, and maleic acid, MA). The structures of the starting materials and of the mixtures were characterized by infrared spectroscopy (FT-IR) and classic molecular dynamics simulations (MD). The thermal behavior was characterized by differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The obtained mixtures, especially the ChAc-based ones, strongly tend to vitrify at low temperatures and are stable up to 100-150 °C. The FTIR measurements suggest the formation of a strong H-bond network: the coordination between acids and ChAc or TBAAc takes place by the donation of the H-bond by the acids to the oxygen of the acetate anion, which acts as an acceptor (HBA). The comparison with MD analysis indicates that acids predominantly exploit their more acidic hydrogens. In particular, we observe the progressive shift of νC═O and νOH when the ratios of acids increase. The structural differences between the two studied cations influence the spatial distribution of the components in the mixture bulk phases. In particular, the analysis of the theoretical structure function I(q) of the TBAAc-based systems shows the presence of important prepeaks at low q, a sign of the formation of apolar domain, due to the nanosegregation of the alkyl chains.

3.
Molecules ; 28(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770749

RESUMEN

The hydrogen/deuterium sorption properties of Ni33Ti39Nb28 synthesized by the vacuum induction melting technique were measured between 400 and 495 °C for pressure lower than 3 bar. The Sieverts law is valid up to H(D)/M < 0.2 in its ideal form; the absolute values of the hydrogenation/deuteration enthalpy are ΔH(H2) = 85 ± 5 kJ/mol and ΔH(D2) = 84 ± 4 kJ/mol. From the kinetics of absorption, the diffusion coefficient was derived, and an Arrhenius dependence from the temperature was obtained, with Ea,d = 12 ± 1 kJ/mol for both hydrogen isotopes. The values of the alloy permeability, obtained by combining the solubility and the diffusion coefficient, were of the order of 10-9 mol m-1 s-1 Pa-0.5, a value which is one order of magnitude lower than that of Ni41Ti42Nb17, until now the best Ni-Ti-Nb alloy for hydrogen purification. In view of the simplicity of the technique here proposed to calculate the permeability, this method could be used for the preliminary screening of new alloys.

4.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35957041

RESUMEN

Atomic deuterium (D) adsorption on free-standing nanoporous graphene obtained by ultra-high vacuum D2 molecular cracking reveals a homogeneous distribution all over the nanoporous graphene sample, as deduced by ultra-high vacuum Raman spectroscopy combined with core-level photoemission spectroscopy. Raman microscopy unveils the presence of bonding distortion, from the signal associated to the planar sp2 configuration of graphene toward the sp3 tetrahedral structure of graphane. The establishment of D-C sp3 hybrid bonds is also clearly determined by high-resolution X-ray photoelectron spectroscopy and spatially correlated to the Auger spectroscopy signal. This work shows that the low-energy molecular cracking of D2 in an ultra-high vacuum is an efficient strategy for obtaining high-quality semiconducting graphane with homogeneous uptake of deuterium atoms, as confirmed by this combined optical and electronic spectro-microscopy study wholly carried out in ultra-high vacuum conditions.

5.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200392

RESUMEN

Knowledge of all the intermolecular forces occurring in ionic liquids (ILs) is essential to master their properties. Aiming at investigating the weaker hydrogen bonding in aprotic liquids, the present work combined computational study and far-infrared spectroscopy on four imidazolium-based ILs with different anions. The DFT calculations of the ionic couples, using the ωB97X-D functional and considering both the empirical dispersion corrections and the presence of a polar solvent, show that, for all samples, the lowest energy configurations of the ion pair present H atoms, directly bound to C atoms of the cation and close to O atoms of the anion, capable of creating moderate to weak hydrogen bonding with anions. For the liquids containing anions of higher bonding ability, the absorption curves generated from the calculated vibrational frequencies and intensities show absorption bands between 100 and 125 cm-1 corresponding to the stretching of the hydrogen bond. These indications are in complete agreement with the presently reported temperature dependence of the far-infrared spectrum, where the stretching modes of the hydrogen bonding are detected only for samples presenting a moderate interaction and become particularly prominent at low temperatures. Moreover, from the analysis of the infrared spectra, the occurrence of various phase transitions as a function of temperature was detected, and the difference in the average energy between the H-bonded and the dispersion-governed molecular configurations was evaluated.


Asunto(s)
Simulación por Computador , Teoría Funcional de la Densidad , Imidazoles/química , Líquidos Iónicos/química , Espectrofotometría Infrarroja/métodos , Enlace de Hidrógeno , Modelos Químicos
6.
Molecules ; 25(3)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019178

RESUMEN

Transition metal substitution is a key strategy to optimize the functional properties of advanced crystalline materials used as positive electrodes in secondary lithium batteries (LIBs). Here we investigate the structural alterations in the olivine lattice of Mn and Ni substituted LiCoPO4 phase and the impact on performance in LIBs. X-ray diffraction (XRD) and extended X-ray absorption experiments have been carried out in order to highlight the structural alterations induced by partial substitution of cobalt by manganese and nickel. XRD analysis suggests that substitution induces an expansion of the lattices and an increase of the antisite disorder between lithium and transition metal ions in the structure. XAS data highlight negligible electronic disorder but a relevant modulation in the local coordination around the different metal ions. Moreover, galvanostatic tests showed poor reversibility of the redox reaction compared to the pure LCP sample, and this failure is discussed in detail in view of the observed remarkable structural changes.


Asunto(s)
Cobalto/química , Electrodos , Compuestos de Hierro/química , Compuestos de Magnesio/química , Manganeso/química , Níquel/química , Óxidos/química , Fosfatos/química , Silicatos/química , Electrónica
7.
Membranes (Basel) ; 9(11)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683556

RESUMEN

A composite membrane based on a Nafion polymer matrix incorporating a non-stoichiometric calcium titanium oxide (CaTiO3-δ) additive was synthesized and characterized by means of thermal analysis, dynamic mechanical analysis, and broadband dielectric spectroscopy at different filler contents; namely two concentrations of 5 and 10 wt.% of the CaTiO3-δ additive, with respect to the dry Nafion content, were considered. The membrane with the lower amount of additive displayed the highest water affinity and the highest conductivity, indicating that a too-high dose of additive can be detrimental for these particular properties. The mechanical properties of the composite membranes are similar to those of the plain Nafion membrane and are even slightly improved by the filler addition. These findings indicate that perovskite oxides can be useful as a water-retention and reinforcing additive in low-humidity proton-exchange membranes.

8.
J Phys Chem Lett ; 10(10): 2463-2469, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31041864

RESUMEN

Among the hybrid metal-organic perovskites for photovoltaic applications, FAPbI3 (FAPI) has the best performance regarding efficiency and the worst regarding stability, even though the reports on its stability are highly contradictory. In particular, since at room temperature the cubic α phase, black and with high photovoltaic efficiency, is metastable against the yellow hexagonal δ phase, it is believed that α-FAPI spontaneously transforms into δ-FAPI within a relatively short time. We performed X-ray diffraction and thermogravimetric measurements on loose powder of FAPI, and present the first complete dielectric and anelastic spectra of compacted FAPI samples under various conditions. We found that α-FAPI is perfectly stable for at least 100 days, the duration of the experiments, unless extrinsic factors induce its degradation. In our tests, degradation was detected after exposure to humidity, strongly accelerated by grain boundaries and the presence of δ phase, but it was not noticeable on the loose powder kept in air under normal laboratory illumination. These findings have strong implications on the strategies for improving the stability of FAPI without diminishing its photovoltaic efficiency through modifications of its composition.

9.
Chemphyschem ; 19(20): 2776-2781, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29972630

RESUMEN

The X-ray scattering patterns of the two ionic liquids, N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide (TMPA-TFSI) and N-trimethyl-N-hexylammonium bis(trifluoromethanesulfonyl)imide (TMHA-TFSI), sharing a common anion and differing in the length of the alkyl chain of the cation, were measured at room temperature. Molecular dynamics calculations supported the interpretation of the data. The two force-field models, GAFF and DLPOLY 4, were adopted to simulate the scattering patterns. Both of them are able to reproduce the main peaks of the experimental data; however, the DLPOLY model seems to better reproduce the finer details. Moreover, from the simulations, the concentration of the two conformers of TFSI are derived. The comparison with previously reported infrared spectroscopy measurements suggests that also under this aspect the DPOLY model has a better agreement with the experiments.

10.
J Phys Chem Lett ; 9(15): 4401-4406, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30027742

RESUMEN

The mechanisms behind the exceptional photovoltaic properties of the metallorganic perovskites are still debated and include a ferroelectric (FE) state from the ordering of the electric dipoles of the organic molecules. We present the first anelastic (complex Young's modulus) and new dielectric measurements on CH3NH3PbI3, which provide new insight into the reorientation dynamics of the organic molecules and the reason why they do not form a FE state. The permittivity is fitted within the tetragonal phase with an expression that includes the coupling between FE and octahedral tilt modes, indicating that the coupling is competitive and prevents FE ordering. The onset of the orthorhombic phase is accompanied by sharp stiffening, analogous to the drop of permittivity, due to the hindered molecular dynamics. On further cooling, an intense anelastic relaxation process without a dielectric counterpart suggests the reorientation of clusters of molecules with strong antiferroelectric correlations.

11.
Membranes (Basel) ; 6(4)2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27879641

RESUMEN

Ni-Nb-Zr amorphous membranes, prepared by melt-spinning, show great potential for replacing crystalline Pd-based materials in the field of hydrogen purification to an ultrapure grade (>99.999%). In this study, we investigate the temperature evolution of the structure of an amorphous ribbon with the composition Ni32Nb28Zr30Cu10 (expressed in atom %) by means of XRD and DTA measurements. An abrupt structural expansion is induced between 240 and 300 °C by hydrogenation. This structural modification deeply modifies the hydrogen sorption properties of the membrane, which indeed shows a strong reduction of the hydrogen capacity above 270 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA