Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 384(6703): 1429-1435, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38935712

RESUMEN

Knowledge of Cambrian animal anatomy is limited by preservational processes that result in compaction, size bias, and incompleteness. We documented pristine three-dimensional (3D) anatomy of trilobites fossilized through rapid ash burial from a pyroclastic flow entering a shallow marine environment. Cambrian ellipsocephaloid trilobites from Morocco are articulated and undistorted, revealing exquisite details of the appendages and digestive system. Previously unknown anatomy includes a soft-tissue labrum attached to the hypostome, a slit-like mouth, and distinctive cephalic feeding appendages. Our findings resolve controversy over whether the trilobite hypostome is the labrum or incorporates it and establish crown-group euarthropod homologies in trilobites. This occurrence of moldic fossils with 3D soft parts highlights volcanic ash deposits in marine settings as an underexplored source for exceptionally preserved organisms.


Asunto(s)
Artrópodos , Fósiles , Erupciones Volcánicas , Animales , Artrópodos/anatomía & histología , Artrópodos/clasificación , Fósiles/anatomía & histología , Marruecos
2.
Proc Natl Acad Sci U S A ; 116(9): 3431-3436, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808737

RESUMEN

Evidence for macroscopic life in the Paleoproterozoic Era comes from 1.8 billion-year-old (Ga) compression fossils [Han TM, Runnegar B (1992) Science 257:232-235; Knoll et al. (2006) Philos Trans R Soc Lond B 361:1023-1038], Stirling biota [Bengtson S et al. (2007) Paleobiology 33:351-381], and large colonial organisms exhibiting signs of coordinated growth from the 2.1-Ga Francevillian series, Gabon. Here we report on pyritized string-shaped structures from the Francevillian Basin. Combined microscopic, microtomographic, geochemical, and sedimentologic analyses provide evidence for biogenicity, and syngenicity and suggest that the structures underwent fossilization during early diagenesis close to the sediment-water interface. The string-shaped structures are up to 6 mm across and extend up to 170 mm through the strata. Morphological and 3D tomographic reconstructions suggest that the producer may have been a multicellular or syncytial organism able to migrate laterally and vertically to reach food resources. A possible modern analog is the aggregation of amoeboid cells into a migratory slug phase in cellular slime molds at times of starvation. This unique ecologic window established in an oxygenated, shallow-marine environment represents an exceptional record of the biosphere following the crucial changes that occurred in the atmosphere and ocean in the aftermath of the great oxidation event (GOE).


Asunto(s)
Evolución Biológica , Fósiles , Sedimentos Geológicos/química , Oxígeno/química , Atmósfera , Biota/fisiología , Gabón , Oxidación-Reducción
3.
Geobiology ; 16(5): 476-497, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29923673

RESUMEN

The 2.1-billion-year-old (Ga) Francevillian series in Gabon hosts some of the oldest reported macroscopic fossils of various sizes and shapes, stimulating new debates on the origin, evolution and organization of early complex life. Here, we document ten representative types of exceptionally well-preserved mat-related structures, comprising "elephant-skin" textures, putative macro-tufted microbial mats, domal buildups, flat pyritized structures, discoidal microbial colonies, horizontal mat growth patterns, wrinkle structures, "kinneyia" structures, linear patterns and nodule-like structures. A combination of petrographic analyses, scanning electron microscopy, Raman spectroscopy and organic elemental analyses of carbon-rich laminae and microtexture, indicate a biological origin for these structures. The observed microtextures encompass oriented grains, floating silt-sized quartz grains, concentrated heavy minerals, randomly oriented clays, wavy-crinkly laminae and pyritized structures. Based on comparisons with modern analogues, as well as an average δ13 C organic matter (Corg ) composition of -32.94 ± 1.17‰ (1 standard deviation, SD) with an outlier of -41.26‰, we argue that the mat-related structures contain relicts of multiple carbon pathways including heterotrophic recycling of photosynthetically derived Corg . Moreover, the relatively close association of the macroscopic fossil assemblages to the microbial mats may imply that microbial communities acted as potential benthic O2 oases linked to oxyphototrophic cyanobacterial mats and grazing grounds. In addition, the mat's presence likely improved the preservation of the oldest large colonial organisms, as they are known to strongly biostabilize sediments. Our findings highlight the oldest community assemblage of microscopic and macroscopic biota in the aftermath of the "Great Oxidation Event," widening our understanding of biological organization during Earth's middle age.


Asunto(s)
Fósiles/microbiología , Biota/fisiología , Cianobacterias/metabolismo , Cianobacterias/ultraestructura , Sedimentos Geológicos/microbiología , Microscopía Electrónica de Rastreo , Compuestos Orgánicos/metabolismo , Espectrometría Raman
4.
Nat Commun ; 8: 15101, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28375202

RESUMEN

Late Quaternary separation of Britain from mainland Europe is considered to be a consequence of spillover of a large proglacial lake in the Southern North Sea basin. Lake spillover is inferred to have caused breaching of a rock ridge at the Dover Strait, although this hypothesis remains untested. Here we show that opening of the Strait involved at least two major episodes of erosion. Sub-bottom records reveal a remarkable set of sediment-infilled depressions that are deeply incised into bedrock that we interpret as giant plunge pools. These support a model of initial erosion of the Dover Strait by lake overspill, plunge pool erosion by waterfalls and subsequent dam breaching. Cross-cutting of these landforms by a prominent bedrock-eroded valley that is characterized by features associated with catastrophic flooding indicates final breaching of the Strait by high-magnitude flows. These events set-up conditions for island Britain during sea-level highstands and caused large-scale re-routing of NW European drainage.

5.
PLoS One ; 9(6): e99438, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24963687

RESUMEN

The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth's surface environments following the first appreciable rise of free atmospheric oxygen concentrations ∼2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rod-shaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.


Asunto(s)
Biodiversidad , Evolución Biológica , Fósiles , Gabón , Origen de la Vida , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA