Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 57(41): 13433-13438, 2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30155954

RESUMEN

The fabrication of well-defined, multifunctional polymer brushes under ambient conditions is described. This facile method uses light-mediated, metal-free atom-transfer radical polymerization (ATRP) to grow polymer brushes with only microliter volumes required. Key to the success of this strategy is the dual action of N-phenylphenothiazine (PTH) as both an oxygen scavenger and polymerization catalyst. Use of simple glass cover slips results in a high degree of spatial and temporal control and allows for multiple polymer brushes to be grown simultaneously. The preparation of arbitrary 3D patterns and functional/emissive polymer brushes demonstrates the practicality and versatility of this novel strategy.

2.
Chemistry ; 23(15): 3562-3566, 2017 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-28125768

RESUMEN

The utility of Meldrum's activated furan (MAF) for the colorimetric detection of sub ppm levels of amines in solution, on solid supports, and as vapors is reported. MAF is synthesized in one step from inexpensive and commercially available starting materials and exhibits high selectivity for primary and secondary amines in the presence of competing nucleophiles. The reaction between activated furans and amines results in a distinct color change, discernable by the naked eye. UV/Vis absorption spectroscopy was utilized to monitor reactions in solution and determine detection limits. Additionally, solutions of MAF were useful as stains for thin layer chromatography and for monitoring solid-phase synthesis of peptides and peptidomimetics. Finally, MAF was used to detect volatile amines released from fish samples, demonstrating potential for food spoilage applications.

3.
J Am Chem Soc ; 138(42): 13960-13966, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27700083

RESUMEN

A class of tunable visible and near-infrared donor-acceptor Stenhouse adduct (DASA) photoswitches were efficiently synthesized in two to four steps from commercially available starting materials with minimal purification. Using either Meldrum's or barbituric acid "acceptors" in combination with aniline-based "donors", an absorption range spanning from 450 to 750 nm is obtained. Additionally, photoisomerization results in complete decoloration for all adducts, yielding fully transparent, colorless solutions and films. Detailed investigations using density functional theory, nuclear magnetic resonance, and visible absorption spectroscopies provide valuable insight into the unique structure-property relationships for this novel class of photoswitches. As a final demonstration, selective photochromism is accomplished in a variety of solvents and polymer matrices, a significant advantage for applications of this new generation of DASAs.

4.
J Org Chem ; 81(16): 7155-60, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27276418

RESUMEN

Despite the number of methods available for dehalogenation and carbon-carbon bond formation using aryl halides, strategies that provide chemoselectivity for systems bearing multiple carbon-halogen bonds are still needed. Herein, we report the ability to tune the reduction potential of metal-free phenothiazine-based photoredox catalysts and demonstrate the application of these catalysts for chemoselective carbon-halogen bond activation to achieve C-C cross-coupling reactions as well as reductive dehalogenations. This procedure works both for conjugated polyhalides as well as unconjugated substrates. We further illustrate the usefulness of this protocol by intramolecular cyclization of a pyrrole substrate, an advanced building block for a family of natural products known to exhibit biological activity.


Asunto(s)
Carbono/química , Radicales Libres/química , Hidrocarburos Halogenados/química , Catálisis , Halogenación , Procesos Fotoquímicos
5.
ACS Macro Lett ; 5(2): 258-262, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35614689

RESUMEN

The development of an operationally simple, metal-free surface-initiated atom transfer radical polymerization (SI-ATRP) based on visible-light mediation is reported. The facile nature of this process enables the fabrication of well-defined polymer brushes from flat and curved surfaces using a "benchtop" setup that can be easily scaled to four-inch wafers. This circumvents the requirement of stringent air-free environments (i.e., glovebox), and mediation by visible light allows for spatial control on the micron scale, with complex three-dimensional patterns achieved in a single step. This robust approach leads to unprecedented access to brush architectures for nonexperts.

6.
Chem Commun (Camb) ; 51(58): 11705-8, 2015 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-26104847

RESUMEN

Here we report the use of 10-phenylphenothiazine (PTH) as an inexpensive, highly reducing metal-free photocatalyst for the reduction of carbon-halogen bonds via the trapping of carbon-centered radical intermediates with a mild hydrogen atom donor. Dehalogenations were carried out on various substrates with excellent yields at room temperature in the presence of air.

7.
ACS Macro Lett ; 4(12): 1332-1336, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35614778

RESUMEN

In addition to the traditional parameters of chi (χ) and degree of polymerization (N), we demonstrate that the segregation strength of a diblock copolymer can be increased by introduction of an ionic unit at the junction of the two blocks. Compared to neutral linking groups, the electrostatic interactions between counterions of adjacent domain junctions leads to increased enthalpy, segregation strength, and phase separation. As a result, the order disorder transition temperatures of block copolymers with a 1,2,3-triazolium ionic junction were observed to be significantly higher than the corresponding neutral block copolymers. To demonstrate the potential of block copolymers with ionic junctions for nanopatterning, block copolymers were prepared by click coupling of homopolymers and then used to fabricate well-defined sub-10 nm line features. We believe that the concept of improved thin-film assembly through the introduction of ionic junctions is a powerful tool for block copolymer lithography and complements chi (χ) and degree of polymerization (N) in the design of macromolecular systems with enhanced phase separation.

8.
J Am Chem Soc ; 136(45): 16096-101, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25360628

RESUMEN

Overcoming the challenge of metal contamination in traditional ATRP systems, a metal-free ATRP process, mediated by light and catalyzed by an organic-based photoredox catalyst, is reported. Polymerization of vinyl monomers are efficiently activated and deactivated with light leading to excellent control over the molecular weight, polydispersity, and chain ends of the resulting polymers. Significantly, block copolymer formation was facile and could be combined with other controlled radical processes leading to structural and synthetic versatility. We believe that these new organic-based photoredox catalysts will enable new applications for controlled radical polymerizations and also be of further value in both small molecule and polymer chemistry.

9.
ACS Macro Lett ; 3(6): 580-584, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35590731

RESUMEN

The controlled radical polymerization of a variety of acrylate monomers is reported using an Ir-catalyzed visible light mediated process leading to well-defined homo-, random, and block copolymers. The polymerizations could be efficiently activated and deactivated using light while maintaining a linear increase in molecular weight with conversion and first order kinetics. The robust nature of the fac-[Ir(ppy)3] catalyst allows carboxylic acids to be directly introduced at the chain ends through functional initiators or along the backbone of random copolymers (controlled process up to 50 mol % acrylic acid incorporation). In contrast to traditional ATRP procedures, low polydispersity block copolymers, poly(acrylate)-b-(acrylate), poly(methacrylate)-b-(acrylate), and poly(acrylate)-b-(methacrylate), could be prepared with no monomer sequence requirements. These results illustrate the increasing generality and utility of light mediated Ir-catalyzed polymerization as a platform for polymer synthesis.

10.
ACS Macro Lett ; 1(1): 100-104, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22639734

RESUMEN

We report the synthesis and controlled radical homo- and block copolymerization of 3-guanidinopropyl methacrylamide (GPMA) utilizing aqueous reversible addition-fragmentation chain transfer (aRAFT) polymerization. The resulting homopolymer and block copolymer with N-(2-hydroxypropyl) methacrylamide (HPMA) were prepared to mimic the behavior of cell penetrating peptides (CPPs) and poly(arginine) (> 6 units) which have been shown to cross cell membranes. The homopolymerization mediated by 4-cyano-4-(ethylsulfanylthiocarbonylsulfanyl)pentanoic acid (CEP) in aqueous buffer exhibited pseudo-first-order kinetics and linear growth of molecular weight with conversion. Retention of the "living" thiocarbonylthio ω-end-group was demonstrated through successful chain extension of the GPMA macroCTA yielding GPMA(37)-b-GPMA(61) (M(w)/M(n) =1.05). Block copolymers of GPMA with the non-immunogenic, biocompatible HPMA were synthesized yielding HPMA(271)-b-GPMA(13) (M(w)/M(n) = 1.15). Notably, intracellular uptake was confirmed by fluorescence microscopy, confocal laser scanning microscopy, and flow cytometry experiments after 2.5 h incubation with KB cells at 4 °C and at 37 °C utilizing FITC-labeled, GPMA-containing copolymers. The observed facility of cellular uptake and the structural control afforded by aRAFT polymerization suggest significant potential for these synthetic (co)polymers as drug delivery vehicles in targeted therapies.

11.
Biomacromolecules ; 9(11): 3277-87, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18937400

RESUMEN

Properties of Aloe vera galacturonate hydrogels formed via Ca(2+) crosslinking have been studied in regard to key parameters influencing gel formation including molecular weight, ionic strength, and molar ratio of Ca(2+) to COO(-) functionality. Dynamic oscillatory rheology and pulsed field gradient NMR (PFG-NMR) studies have been conducted on hydrogels formed at specified Ca(2+) concentrations in the presence and absence of Na(+) and K(+) ions in order to assess the feasibility of in situ gelation for controlled delivery of therapeutics. Aqueous Ca(2+) concentrations similar to those present in nasal and subcutaneous fluids induce the formation of elastic Aloe vera polysaccharide (AvP) hydrogel networks. By altering the ratio of Ca(2+) to COO (-) functionality, networks may be tailored to provide elastic modulus (G') values between 20 and 20000 Pa. The Aloe vera polysaccharide exhibits time-dependent phase separation in the presence of monovalent electrolytes. Thus the relative rates of calcium induced gelation and phase separation become major considerations when designing a system for in situ delivery applications where both monovalent (Na(+), K(+)) and divalent (Ca(2+)) ions are present. PFG-NMR and fluorescence microscopy confirm that distinctly different morphologies are present in gels formed in the presence and absence of 0.15 M NaCl. Curve fitting of theoretical models to experimental release profiles of fluorescein labeled dextrans indicate diffusion rates are related to hydrogel morphology. These studies suggest that for efficient in situ release of therapeutic agents, polymer concentrations should be maintained above the critical entanglement concentration ( Ce, 0.60 wt %) when [Ca(2+)]/[COO(-)] ratios are less than 1. Additionally, the monovalent electrolyte concentration in AvP solutions should not exceed 0.10 M prior to Ca(2+) crosslinking.


Asunto(s)
Aloe/química , Calcio/química , Sistemas de Liberación de Medicamentos , Hidrogeles/química , Polisacáridos/química , Espectroscopía de Resonancia Magnética , Peso Molecular , Concentración Osmolar , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA