Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32149633

RESUMEN

Barium titanate (BaTiO3) is increasingly studied to replace lead-based piezoelectric materials, such as those which belong to the lead zirconate titanate (PZT) family, due to lead toxicity. In many applications, such as Tonpilz transducers, piezoelectric materials undergo mechanical stress simulation of which is important to control and predict electroacoustic effects. Thus, this article deals with a fully tensorial model that allows to simulate the behaviors of electrical displacements and elastic strains under mechanical stress. Simulated curves are compared with experimental ones obtained for BaTiO3 samples. It can be verified that the hysteretic curves of strains are well predicted for unpoled samples as well as for poled ones. The order of values and global behavior of the theoretical electrical displacement are also verified, even if a less precise agreement is observed. The optimized values of the physical parameters, such as d33 , are discussed, and improvements both of the model and the optimization procedure are finally proposed in order to better predict the mechanical behavior of BaTiO3.

2.
Artículo en Inglés | MEDLINE | ID: mdl-31502967

RESUMEN

Barium titanate (BaTiO3) is being studied extensively to replace lead-based piezoelectric materials, such as the lead zirconate titanate (PZT) family, due to lead toxicity. As a result, researchers are turning to materials such as BaTiO3 and seek to improve their properties with the use of dopants. In many applications such as Tonpilz transducers, piezoelectric materials undergo mechanical stress which is important to control and predict their electro-acoustic performance. Thus, this study deals with a fully tensorial model that allows us to simulate the behaviors of electrical displacements and elastic strains under mechanical stress. The simulated curves are compared with the experimental ones obtained for a doped BaTiO3 composition and the hysteretic curves of strains are in good agreement both for the unpoled and poled samples. The values and global behavior of the theoretical electrical displacement are also found to be in fair agreement, though some discrepancies are observed. The optimized values of the physical parameters, such as d33 , are discussed and improvements both of the model and the optimization procedure are finally proposed to better predict the mechanical behavior of the doped BaTiO3 piezoceramics.

3.
Artículo en Inglés | MEDLINE | ID: mdl-30371362

RESUMEN

Dense barium titanate (BaTiO3) ceramics ( [Formula: see text]) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO3 (BT) doped with Co2+/3+ leads to a significant improvement in the properties ( pC/N). Soft and hard characteristics of the piezoceramics are observed depending on the dopant ions. The Co/Li acceptor dopants lead to hard piezoceramics and aging phenomena. Aged BT:Co, Li exhibits double loops and a distorted hysteresis cycle for nonpoled and poled ceramics, respectively. Ceramics poled by the increasing field process at room temperature and the field cooling process present different poled and aged states, which are dependent on the thermal history and poling process. The distorted hysteresis loops for BT:Co, Li indicate an increased internal bias field with aging time. Insertion of donor dopants, such as Nb5+ ions, significantly reduces the internal field. These behaviors are related to the presence of defect dipoles ( [Formula: see text]"- [Formula: see text] due to the insertion of acceptor dopants in the B-sites following the oxygen vacancies to equilibrate charge compensation. BT:Co sintered with LiF leads to a quasi-symmetric hysteresis loop, indicating that F- may insert into an oxygen site and counteract the formation of oxygen vacancies. Dielectric drift of BT:Co, Li shows resilience to an ac electric field, which is related to the increased internal field. BT doped with 0.75 mol% Co2+/3+ and 1 mol% Li2CO3 presents hard piezoelectric behavior with a Rayleigh coefficient α = 2.53 10-7 m/V and the capability to handle high electrical stress of up to 400 [Formula: see text]/mm.

4.
Artículo en Inglés | MEDLINE | ID: mdl-24081272

RESUMEN

Recently, a second-order formalism of piezoelectric structures under an external mechanical stress was developed. Because the yield strength of lithium niobate was unknown, this study was not able to describe and evaluate realistic benefits of a prestress load on electromechanical properties. Therefore, in this study, experimental determination of the yield strength of lithium niobate sample is performed and shows that this limit is close to 110 MPa. Then, the nonlinearities and evolutions of electroacoustic parameters of this piezoelectric material under mechanical stress are numerically studied. By varying the initial prestress, as well as azimuthal and elevation angles, the cut planes in which a prestress induces significant benefits on velocities and coupling coefficient are identified. Finally, approximate relations describing changes between electroacoustic parameters defined in the two coordinate systems of the study are determined.

5.
Artículo en Inglés | MEDLINE | ID: mdl-23007770

RESUMEN

Pad-printed thick-film transducers have been shown to be an interesting alternative to lapped bulk piezoceramics, because the film is deposited with the required thickness, size, and geometry, thus avoiding any subsequent machining to achieve geometrical focusing. Their electromechanical properties are close to those of bulk ceramics with similar composition despite having a higher porosity. In this paper, padprinted high-frequency transducers based on a low-loss piezoceramic composition are designed and fabricated. High-porosity ceramic cylinders with a spherical top surface are used as the backing substrate. The transducers are characterized in view of imaging applications and their imaging capabilities are evaluated with phantoms containing spherical inclusions and in different biological tissues. In addition, the transducers are evaluated for their capability to produce high-acoustic intensities at frequencies around 20 MHz. High-intensity measurements, obtained with a calibrated hydrophone, show that transducer performance is promising for applications that would require the same device to be used for imaging and for therapy. Nevertheless, the transducer design can be improved, and simulation studies are performed to find a better compromise between low-power and high-power performance. The size, geometry, and constitutive materials of optimized configurations are proposed and their feasibility is discussed.


Asunto(s)
Transductores , Ultrasonografía/instrumentación , Animales , Cerámica , Simulación por Computador , Ojo/diagnóstico por imagen , Plomo , Fantasmas de Imagen , Conejos , Titanio , Circonio
6.
Artículo en Inglés | MEDLINE | ID: mdl-19213643

RESUMEN

The design of transducers requires a clear understanding of their electromechanical behavior. This involves precise linear modeling as well as characterization. With the development of novel techniques such as harmonic imaging as well as high-power applications, nonlinear aspects must also be taken into account. In this study, harmonic generation in the mechanical displacement of a piezoceramic rod under high sinusoidal electric fields was measured. Theoretically, the nonlinearity can come from various sources: dielectric, mechanical, and electromechanical. The nonlinearity coming from external sources being eliminated or taken into account, it is shown here that the analysis, over a wide frequency range, of 2 parameters related to the harmonic distortion enables the respective identification of these sources and, at the same time, the evaluation of third-order constants of the material.

7.
Artículo en Inglés | MEDLINE | ID: mdl-18051173

RESUMEN

In this paper, a new formulation of the electrical input impedance of a single element transducer is presented. The resistive part of the electrical impedance that takes into account acoustic radiation in the front medium and losses in the transducer is split into a radiation resistance on one hand and into dissipation resistances related to each transducer component on the other hand. To confirm these theoretical results, characterization methods based on temperature measurements and pulse-echo response are presented. Measurements have been conducted on 1 MHz transducers, which consist of a piezoelectric ceramic glued on a backing. The results show a good agreement between experience and theory for dissipation resistance and radiation resistance values, which confirms the theoretical approach.

8.
Ultrasonics ; 46(2): 155-67, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17382986

RESUMEN

The goal of this work was to develop an extended ultrasound transducer model that would optimize the trade-off between accuracy of the calculation and computational time. The derivations are presented for a generalized transducer model, that is center frequency, pulse duration and physical dimensions are all normalized. The paper presents a computationally efficient model for lens-focused, circular (axisymmetric) single element piezoelectric ultrasound transducer. Specifically, the goal of the model is to determine the lens effect on the electro-acoustic response, both on focusing and on matching acoustic properties. The effective focal distance depends on the lens geometry and refraction index, but also on the near field limit, i.e. wavelength and source radius, and on the spectrum bandwidth of the ultrasound source. The broadband (80%) source generated by the transducer was therefore considered in this work. A new model based on a longitudinal-wave assumption is presented and the error introduced by this assumption is discussed in terms of its maximum value (16%) and mean value (5.9%). The simplified model was based on an extension of the classical KLM model for transducer structures and on the related assumptions. The validity of the implemented extended KLM model was evaluated by comparison with finite element modeling, itself previously validated analytically for the one-dimensional planar geometry considered. The pressure field was then propagated using the adequate formulation of the Rayleigh integral for both the extended KLM and finite element results. The simplified approach based on the KLM model delivered the focused response with good accuracy, and hundred-fold lower calculation time in comparison with a mode comprehensive FEM method. The trade-off between precision and time thus becomes compatible with an iterative procedure, used here for the optimization of the acoustic impedance of the lens for the chosen configuration. An experimental comparison was performed and found to be in good agreement with such an extension of the KLM model. The experiments confirm the accuracy of such a model in a validity domain up to -12 dB on the pulse-echo voltage within a relative error of 9% between experiment and modeling. This extended KLM model can advantageously be used for other transducer geometries satisfying the assumption of a predominantly longitudinal vibration or in an optimization procedure involving an adequate criteria for a particular application.


Asunto(s)
Algoritmos , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Transductores , Ultrasonografía/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Lentes , Modelos Biológicos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Ultrasonografía/métodos
9.
Artículo en Inglés | MEDLINE | ID: mdl-16921905

RESUMEN

A screen-printed PZT thick film with a final thickness of about 40 microm was deposited on a porous PZT substrate to obtain an integrated structure for ultrasonic transducer applications. This process makes it possible to decrease the number of steps in the fabrication of high-frequency, single-element transducers. The porous PZT substrates allow high acoustic impedance and attenuation to be obtained, satisfying transducer backing requirements for medical imaging. The piezoelectric thick films deliver high electromechanical performance, comparable to that of standard bulk ceramics (thickness coupling factor over 45%). Based on these structures, high-frequency transducers with a center frequency of about 25 MHz were produced and characterized. As a result, good sensitivity and axial resolution were obtained in comparison with similar transducers integrating a lead titanate (PT) disk as active material. The two transducers were integrated into a high-frequency imaging system, and comparative skin images are shown.


Asunto(s)
Aumento de la Imagen/instrumentación , Interpretación de Imagen Asistida por Computador/instrumentación , Piel/diagnóstico por imagen , Transductores , Ultrasonografía/instrumentación , Electroquímica/instrumentación , Electroquímica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Membranas Artificiales , Fantasmas de Imagen , Ondas de Radio , Integración de Sistemas , Ultrasonografía/métodos
10.
Ultrasonics ; 44 Suppl 1: e621-6, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-16782147

RESUMEN

Piezoelectric textured ceramics obtained by homo-template grain growth (HTGG) were recently demonstrated. A simple model with several assumptions has been used to calculate effective parameters of these new materials. Different connectivities have been simulated to show that spatial arrangements between the considered phases have little influence on the effective parameters, even through the 3-0 connectivity delivers the highest electromechanical thickness factor. A transducer based on a textured ceramic sample has been fabricated and characterised to show the efficiency of these piezoelectric materials. Finally, in a single element transducer configuration, simulation shows an improvement of 2 dB sensitivity for a transducer made with textured ceramic in comparison with a similar transducer design based on standard soft PZT (at equivalent bandwidths).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA