Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Recent Adv Drug Deliv Formul ; 15(1): 37-45, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33685385

RESUMEN

L-asparaginase (L-asparagine amino hydrolase, E.C.3.5.1.1) is the most important chemotherapeutic drug used in treating Acute Lymphocytic Leukemia (ALL), decreasing blood asparagine rates causing apoptosis in tumor cells. However, pharmacological drugs cause several side effects making treatments difficult. Thus, searches for new sources of L-asparaginase or enzyme modifications focus on discovering new products to use in therapy. This article reviewed published patents from 2000 to 2020 related to the treatment of ALL using L-asparaginase. Many organisms have been shown as potential viable L-asparaginase producers for use in the treatment of ALL. However, this patent review shows that few of these organisms are gaining attention to becoming bioproducts for the market. It is expected that drugs in the testing phase and patents related to the treatment of ALL and other cancers will become real products. Besides, a treatment using an amino acid depletion approach, now referring to asparagine, altogether with a compound that directly interferes with the expression of the asparagine synthase gene, is more suitable for the treatment of ALL and possibly to other cancers.


Asunto(s)
Antineoplásicos , Aspartatoamoníaco Ligasa , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/uso terapéutico , Asparaginasa/uso terapéutico , Asparagina/uso terapéutico , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
2.
PLoS One ; 14(4): e0214745, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30995240

RESUMEN

Given the growing incidence and prevalence of life-threatening food allergies, health concerns have raised new perspectives for in vivo and in vitro diagnostic methodologies, pointing to saliva as a promising material, already used to diagnose other pathologies. Based on the above considerations, this study aimed to verify the possible use of saliva for the detection of IgE and IgG1 in the diagnosis of food allergy. This was a randomized, cross-sectional clinical study with a quantitative approach, developed at a hospital referral center in allergy in the state of Ceará, from January to July 2015. The sample consisted of 36 children of both sexes, aged between 1 and 60 months, with a diagnosis of cow's milk protein allergy (CMPA) by the RAST test. Children hospitalized or under immunosuppressive drugs were excluded from the study. Serum and saliva samples of the participants were collected and subsequently subjected to the indirect immunoenzymatic assay (ELISA) for the detection of specific serum and salivary immunoglobulins for food: corn, papaya, cow's milk, egg white, wheat, soybeans, peanuts, nuts, kiwi, cacao, fish, shrimp, bananas and tomatoes. For comparison of serum and saliva results, the T-test of independent samples and Mann-Whitney were adopted, for samples with normal and non-normal distribution respectively. A confidence interval of 95% was adopted for significant results. It was observed that 100% (n = 36) of the participants presented cow's milk allergy through the indirect ELISA, detecting IgE or IgG1 in serum and saliva. When serum IgE and IgG1 concentrations were compared, there was no statistical difference (p > 0.05) in 12 of the 14 foods evaluated. The same amount (n = 12) of non-significant differences (p > 0.05) was observed in the comparison of the 14 foods under IgE and IgG1 contractions in saliva. In the verification of the average values of IgE present in the serum and saliva of the foods, only cow's milk, fish and papaya showed statistically significant differences (p < 0.05). Of the total food evaluated, only the average levels of IgG1 present in serum and saliva showed a significant value (p < 0.05) in banana and tomato. These findings indicate that the detection of IgE and IgG1 in saliva proves to be as efficient as in the serum. The use of the salivary technique for use in the diagnosis of food allergy is suggested.


Asunto(s)
Hipersensibilidad a los Alimentos/diagnóstico , Inmunoglobulina E/análisis , Inmunoglobulina G/análisis , Saliva/metabolismo , Animales , Bovinos , Preescolar , Estudios Transversales , Femenino , Hipersensibilidad a los Alimentos/tratamiento farmacológico , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Inmunosupresores/uso terapéutico , Lactante , Recién Nacido , Masculino , Leche/inmunología , Leche/metabolismo , Hipersensibilidad a la Leche/diagnóstico , Hipersensibilidad a la Leche/tratamiento farmacológico , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA