Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(38): 27622-27633, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39221124

RESUMEN

Cobalt-doped zinc oxide nanoparticles (NPs) were synthesized using a modified sol-gel method. Thereafter, the obtained powder was deposited on a Suprasil glass substrate by employing a pulsed laser deposition (PLD) technique. X-ray diffraction analysis with Rietveld refinement confirmed a hexagonal wurtzite ZnO phase belonging to the P63 mc space group for both samples in the NP and thin film forms. In particular, the thin film exhibited an intensive (002) XRD peak, indicating that it had a preferred c-axis orientation owing to the self-texturing mechanism. No segregated secondary phases were detected. The crystallite structure, morphology, and size were investigated using high-resolution transmission electron microscopy (HRTEM). To study the crystalline quality, structural disorder, and defects in the host lattice, we employed Raman spectroscopy. UV-vis-NIR spectroscopy was performed to confirm the nature of the Co-doped ZnO NP powder and the film. The chemical states of oxygen and zinc in the thin film sample were also investigated via X-ray photoelectron spectroscopy (XPS). The M-T curve could be successfully fitted using both the three-dimensional (3D) spin-wave model and Curie-Weiss law, confirming the mixed state existence of weak ferromagnetic (FM) and paramagnetic (PM) phases. Magnetic interaction was quantitatively studied and explained by polaronic percolation of bound magnetic polarons (BMPs). Analysis of magnetic symmetry of the topological antiferromagnetic as-deposited thin film using torque measurements was performed. Based on a phenomenological model, it was revealed that the structure gives rise to uniaxial magneto-crystalline anisotropy (UMA) with the magnetic easy axis parallel to the c-axis.

2.
Dalton Trans ; 44(23): 10795-805, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25740006

RESUMEN

Detailed studies of the electronic states for Mo(0.3)Cu(0.7)Sr(2)ErCu(2)Oy samples with different oxygen contents are presented here. The influence of oxygenation on the electronic states for the Mo(0.3)Cu(0.7)Sr(2)ErCu(2)Oy system from the semiconducting to the superconducting state has been investigated by means of X-ray photoelectron spectroscopy (XPS). The XPS studies show that Mo is in a mixed Mo(V) and Mo(VI) oxidation state and Mo(V) is predominant over the Mo(VI) in the as-prepared (AP) sample. Yet annealing under an oxygen atmosphere enhances the Mo(VI) state. At the same time, a reduction in the copper species is observed. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E(S)-E(M)) and a lower intensity ratio (I(S)/I(M)) are found to correlate with higher values of the superconducting transition temperature (T(C)). Analysis of these spectra within the Configuration Interaction (CI) model suggests that higher values of TC are related to lower values of the O 2p-Cu 3d charge transfer energy. The change in the Sr 3d and O 1s core level spectra correlates with the oxygen insertion in the (Mo/Cu)O(1+δ) chain site, after oxygenation. The hole concentration (Ph) in the copper plane has been obtained using the room temperature thermoelectric power (TEP) value; this shows an increasing tendency with increasing T(C), after oxygenation. From these experimental results, one observes that T(C)increases with decreasing charge transfer energy. This is, indeed, opposite to the accepted views and occurs in parallel with the shortening of the apical copper-oxygen distance (Cu(2)-O(2)) and the increasing of the CuO(2) plane buckling angle.

3.
Inorg Chem ; 52(14): 7853-61, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23815290

RESUMEN

Sealed-tube synthesis of BiMn2O5 materials and their physical properties have rationally been reinvestigated depending on the reactants. The aim of the study was to characterize its potential multiferroic properties and to investigate the anomalous magnetic properties in relation to the expected ferroelectric properties. Rietveld refinement of the room temperature X-ray diffraction data shows the stability of the crystallographic structure with a Mn(3+)/Mn(4+) ratio far from 1 because of bismuth and oxygen deficiencies despite the sealed-tube synthesis. Our detailed magnetic susceptibility and specific heat data analysis unambiguously support an intrinsic anomalous magnetic behavior in relation to the establishment of a magnetic short-range ordering far from the Néel temperature. Around room temperature, oxygen vacancies are responsible for supporting the dielectric loss peak measured, and, interestingly, the so-called T*, which was underlined in relation to an anomalous phonon shift (García-Flores, A. F.; et al. Phys. Rev. B 2006, 73, 104411), is not a characteristic temperature in relation to the multiferroic properties because no ferroelectric transition was detected.

4.
J Phys Condens Matter ; 25(16): 165704, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23551981

RESUMEN

A detailed study of the structure and properties for the as-prepared and oxygen annealed Mo0.3Cu0.7Sr2TmCu2Oy material is reported. The Cu/Mo cationic distribution is established using a combination of x-ray/neutron powder diffraction refinement. The chemical substitution of the Mo ions for the Cu ions in the CuYSr2Cu2O(7-δ) structure is found to occur in both of the copper sites for the as-prepared sample. Interestingly, no trace of Mo substitution in the copper plane site is found to occur after oxygenation. The as-prepared Mo0.3Cu0.7Sr2TmCu2Oy material is found to be a spin glass (SG) system and explained on the basis of the cluster-by-cluster freezing model. On the other hand, the oxygen annealed material is superconducting (SC) (T(SC,onset) = 31 K). A peak has been observed in the critical current density plot and can be explained on the basis of field induced pins. The influence of oxygen annealing in the structure and properties of this material are presented and discussed. This seems to be the first case of a SG-SC transformation following an oxidation reaction in cuprates.

5.
Inorg Chem ; 46(26): 10996-1002, 2007 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-18004842

RESUMEN

ZnO doped with Co2+ has been prepared by a Pechini process and investigated in terms of crystallographic structure and UV-visible properties. We emphasize for the first time a splitting of the ZnO band gap in two "sub-band gaps" (never clearly mentioned until now) which is fully interpreted basing on the iono-covalent nature of the O-Zn bonds. An anticipative approach of the potential structure relaxations was discussed from exchanged effective charge per bond calculated with the purely ionic Brown and Altermatt model.

6.
Phys Rev Lett ; 92(5): 056403, 2004 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-14995324

RESUMEN

Orbital ordering (OO) in the layered perovskite La0.5Sr1.5MnO4 has been investigated using the enhanced sensitivity of soft x-ray resonant diffraction at the Mn L edges. The energy dependence of an OO diffraction peak over the L(2,3) edges is compared to ligand-field calculations allowing a distinction between the influences of Jahn-Teller distortions and spin correlations. The energy dependence of the diffraction peak at the Mn L1 edge is remarkably different from that observed at the Mn K edge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA