Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 11(1): 66, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35318313

RESUMEN

Driven by many applications in a wide span of scientific fields, a myriad of advanced ultrafast imaging techniques have emerged in the last decade, featuring record-high imaging speeds above a trillion-frame-per-second with long sequence depths. Although bringing remarkable insights into various ultrafast phenomena, their application out of a laboratory environment is however limited in most cases, either by the cost, complexity of the operation or by heavy data processing. We then report a versatile single-shot imaging technique combining sequentially timed all-optical mapping photography (STAMP) with acousto-optics programmable dispersive filtering (AOPDF) and digital in-line holography (DIH). On the one hand, a high degree of simplicity is reached through the AOPDF, which enables full control over the acquisition parameters via an electrically driven phase and amplitude spectro-temporal tailoring of the imaging pulses. Here, contrary to most single-shot techniques, the frame rate, exposure time, and frame intensities can be independently adjusted in a wide range of pulse durations and chirp values without resorting to complex shaping stages, making the system remarkably agile and user-friendly. On the other hand, the use of DIH, which does not require any reference beam, allows to achieve an even higher technical simplicity by allowing its lensless operation but also for reconstructing the object on a wide depth of field, contrary to classical techniques that only provide images in a single plane. The imaging speed of the system as well as its flexibility are demonstrated by visualizing ultrashort events on both the picosecond and nanosecond timescales. The virtues and limitations as well as the potential improvements of this on-demand ultrafast imaging method are critically discussed.

2.
Opt Lett ; 45(23): 6398-6401, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258821

RESUMEN

We demonstrate a fiber optical parametric chirped-pulse oscillator (FOPCPO) pumped in the normal-dispersion regime by chirped pulses at 1.036 µm. Highly chirped idler pulses tunable from 1210 nm to 1270 nm with energies higher than 250 nJ are generated from our system, along with signal pulses tunable from 870 nm to 910 nm. Numerical simulations demonstrate that further energy scaling is possible and paves the way for the use of such FOPCPOs for applications requiring high-energy, compact, and low-noise sources, such as in biophotonics or spectroscopy.

3.
Opt Lett ; 44(22): 5497-5500, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730092

RESUMEN

We demonstrate for the first time, to our knowledge, an all-polarization-maintaining double-clad neodymium fiber laser operating in the dissipative soliton resonance (DSR) regime where stable mode-locking is achieved using a nonlinear amplifying loop mirror (NALM) with large normal dispersion in a figure-8 cavity design. The laser thereby generates square-shaped nanosecond pulses whose duration linearly scales with pump power from 0.5 up to 6 ns, with a maximum energy of 20 nJ. In addition, output pulses feature a remarkably narrow bandwidth of 60 pm along with a signal-to-noise ratio higher than 80 dB. This study then paves the way toward using such DSR-based sources for efficient frequency doubling in the blue spectral range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA