Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Opin Virol ; 61: 101335, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37307646

RESUMEN

To cause pandemics, zoonotic respiratory viruses need to adapt to replication in and spread between humans, either via (indirect or direct) contact or through the air via droplets and aerosols. To render influenza A viruses transmissible via air, three phenotypic viral properties must change, of which receptor-binding specificity and polymerase activity have been well studied. However, the third adaptive property, hemagglutinin (HA) acid stability, is less understood. Recent studies show that there may be a correlation between HA acid stability and virus survival in the air, suggesting that a premature conformational change of HA, triggered by low pH in the airways or droplets, may render viruses noninfectious before they can reach a new host. We here summarize available data from (animal) studies on the impact of HA acid stability on airborne transmission and hypothesize that the transmissibility of other respiratory viruses may also be impacted by an acidic environment in the airways.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Hemaglutininas , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Sistema Respiratorio , Adaptación Fisiológica
2.
Front Bioeng Biotechnol ; 11: 1197760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284240

RESUMEN

Three-dimensional (3D) cell cultures, including organ-on-a-chip (OOC) devices, offer the possibility to mimic human physiology conditions better than 2D models. The organ-on-a-chip devices have a wide range of applications, including mechanical studies, functional validation, and toxicology investigations. Despite many advances in this field, the major challenge with the use of organ-on-a-chips relies on the lack of online analysis methods preventing the real-time observation of cultured cells. Mass spectrometry is a promising analytical technique for real-time analysis of cell excretes from organ-on-a-chip models. This is due to its high sensitivity, selectivity, and ability to tentatively identify a large variety of unknown compounds, ranging from metabolites, lipids, and peptides to proteins. However, the hyphenation of organ-on-a-chip with MS is largely hampered by the nature of the media used, and the presence of nonvolatile buffers. This in turn stalls the straightforward and online connection of organ-on-a-chip outlet to MS. To overcome this challenge, multiple advances have been made to pre-treat samples right after organ-on-a-chip and just before MS. In this review, we summarised these technological advances and exhaustively evaluated their benefits and shortcomings for successful hyphenation of organ-on-a-chip with MS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA