Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687587

RESUMEN

Dispersion-hardened materials based on TiC-AlnCn are alloys with high heat resistance, strength, and durability that can be used in aircraft and rocket technology as a hard lubricant. The titanium-rich composites of the Ti-Al-C system were synthesized via the spark plasma sintering process. Composite powder with 85% of Ti, 15% of Al, and MAX-phases was processed using high-voltage electrical discharge in kerosene at a specific energy of 25 MJ kg-1 to obtain nanosized particles. This method allows us to analyze the most efficient, energy saving, and less waste-generating technological processes producing materials with improved mechanical and physical properties. An Innova test indentation machine was used to determine the hardness of the synthesized composites. The microhardness of Ti-Al-C system samples was determined as approximately 500-600 HV. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were performed to identify the hard titanium matrix reinforced by intermetallic phases and the clusters of carbides. Three types of reinforcing phases were detected existing in the composites-TiC, Al4C3, and Al3Ti, as well as a matrix consisting of α- and ß-titanium. The lattice parameters of all phases detected in the composites were calculated using Rietveld analysis. It was determined that by increasing the temperature of sintering, the amount of aluminum and carbon increases in the carbides and intermetallic phases, while the amount of titanium decreases.

2.
Materials (Basel) ; 17(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38203969

RESUMEN

Titanium-based composite materials arouse interest in fields like aerospace, transportation, medicine, and other applications. This research project presents the analysis of phase composition of sintered Ti-Al-C composite materials under high voltage electrical discharge. The new technology, described in the previous work of the authors, allows to synthesise the composites containing various intermetallics, carbides, and nanostructures. The samples of Ti-Al-C powder composites were tested by SEM, Raman spectroscopy, and XRD. It was determined that the treatment of the powder by high voltage electrical discharge (HVED) and further sintering at high temperatures using the spark plasma sintering (SPS) method encouraged the formation of the intermetallic reinforcing phases, carbides, and different nanocarbon structures like graphene and fullerenes, as well as pure graphite. Intermetallic phases and nanocarbon structures improved the mechanical and physical properties of the composites. By using the experimental methods mentioned above, the phase composition of Ti-Al-C powder composites obtained at different sintering temperatures was determined. It was revealed that new composite materials produced by HVED and further SPS were rich with carbides, intermetallics, and MAX phases. Therefore, the carbon nanostructures (graphene and graphite) were detected existing in the structure of the produced new Ti-Al-C composite material. All these reinforcing particles improved the microstructure and the mechanical properties of the composites, as was proved in the previous research by the authors and by the different scientific resources. This project is a pilot experimental work, therefore not all peaks of Raman and XRD were detected; they will be analysed in future works.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA