Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Forensic Sci Int ; 360: 112061, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824866

RESUMEN

INTRODUCTION: Teeth are biological structures with a high degree of hardness, density, calcification, and capacity to adapt to extrinsic factors at physical, biological, and physiological levels. Subsequently, they resist for a longer period in deteriorating environmental conditions. With dental analysis, it is possible to acquire biographical data about a person. The aim of this scoping review was to identify publications using human teeth tissues to estimate sexual dimorphism. METHODS: The scoping review was carried out in the following databases: Jstor, Scielo, Science Direct, PubMed, and Scopus, using ten search strategies in English and guaranteeing completeness and reproducibility of the phases stipulated in the PRISMA guide. RESULTS: 143 studies on sexual dimorphism based on dental tissue traits were included, of which 40.6% (n = 58) were done in Asia and 27.2% (n = 39) in America. 80% of the studies (equivalent to 114 articles) focused their observations and measurements on the dental crown; 4.2% in enamel, dentin, and pulp together; 3.5% in dental pulp; 2.1% in the entire tooth; 2.8% in enamel, root, and the enamel-cementum junction, and only 0.7% in dentin and pulp. In addition, 92.3% of the studies used metric methods, while only 4.9% and 2.8% used biochemical and non-metric method respectively. CONCLUSION: For sexual dimorphism establishment, enamel has been the most analyzed dental tissue in permanent canines and molars mainly. Likewise, the most widely and accurately used methods for this purpose are the metrics, with the odontometry as the most implemented (intraoral or by using dental plaster models, digital scanning or software) with prediction percentages ranging from 51% to 95.9%. In contrast to biochemical methods, that can achieve the highest precision (up to 100%), the non-metric methods, to a less extent, reported prediction percentages of 58%.


Asunto(s)
Odontología Forense , Caracteres Sexuales , Diente , Humanos , Odontología Forense/métodos , Dentina , Esmalte Dental , Pulpa Dental/diagnóstico por imagen
2.
Stem Cells Dev ; 19(10): 1535-46, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20053128

RESUMEN

Chronic spinal cord injury (SCI) is characterized by tissue loss and a stable functional deficit. While several experimental therapies have proven to be partly successful for the treatment of acute SCI, treatment of chronic SCI is still challenging. We studied whether we can bridge a chronic spinal cord lesion by implantation of our newly developed hydrogel based on 2-hydroxypropyl methacrylamide, either alone or seeded with mesenchymal stem cells (MSCs), and whether this treatment leads to functional improvement. A balloon-induced compression lesion was performed in adult 2-month-old male Wistar rats. Five weeks after injury, HPMA-RGD hydrogels [N-(2-hydroxypropyl)-methacrylamide with attached amino acid sequences--Arg-Gly-Asp] were implanted into the lesion, either with or without seeded MSCs. Animals with chronic SCI served as controls. The animals were behaviorally tested using the Basso­Beattie-Breshnahan (BBB) (motor) and plantar (sensory) tests once a week for 6 months. Behavioral analysis showed a statistically significant improvement in rats with combined treatment, hydrogel and MSCs, compared with the control group (P < 0.05). Although a tendency toward improvement was found in rats treated with hydrogel only, this was not significant. Subsequently, the animals were sacrificed 6 months after SCI, and the spinal cord lesions evaluated histologically. The combined therapy (hydrogel with MSCs) prevented tissue atrophy (P < 0.05), and the hydrogels were infiltrated with axons myelinated with Schwann cells. Blood vessels and astrocytes also grew inside the implant. MSCs were present in the hydrogels even 5 months after implantation. We conclude that 5 weeks after injury, HPMA-RGD hydrogels seeded with MSCs can successfully bridge a spinal cord cavity and provide a scaffold for tissue regeneration. This treatment leads to functional improvement even in chronic SCI.


Asunto(s)
Hidrogeles/química , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Metacrilatos/química , Regeneración Nerviosa/fisiología , Oligopéptidos/química , Traumatismos de la Médula Espinal/terapia , Animales , Conducta Animal/fisiología , Enfermedad Crónica , Humanos , Implantes Experimentales , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA