Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 12(1): 399-410, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38268903

RESUMEN

Diabetes mellitus unbalances cellular antioxidant levels. This phenomenon can potentially lead to cellular damage and apoptosis in the male reproductive system. Besides, herbal-based antioxidants can prevent these detrimental changes. Thus, we assessed the probable role of Aubergine stems with antioxidant and anti-hyperlipidemic characteristics on reproductive damage following diabetes mellitus induction. Forty male NMRI mice were categorized into groups of control and treatments. Diabetes was induced by a single dose of streptozotocin (60 mg/kg), and the extract was administered at various doses (100, 300, and 500 mg/kg) daily for 4 weeks. Antioxidative features of the extract were approved by phytochemical assays and ferric-reducing ability of plasma. Side-effects of diabetes were also assessed by the malondialdehyde (MDA) and Griess techniques. Sperm parameters, LH, FSH, and testosterone levels, the TUNEL assay, histopathologic alteration, and apoptotic genes (p53, caspase-3, Bcl-2) were evaluated. Results showed that diabetes increased oxidation levels and the extract accelerated total antioxidant capacity status. Sperm parameters and hormone levels were restored following extract administration in diabetic animals. Also, the apoptosis rate decreased following extract administration in diabetic animals. We concluded that diabetes can elevate the levels of oxidation and suppress the antioxidant power. These pathologic changes were restored by Aubergine stem, leading to decreased levels of apoptosis and normal serum levels of testosterone, LH, and FSH.

2.
Cancer Treat Res Commun ; 32: 100605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35816909

RESUMEN

Recent advances in nanotechnology sciences lead to the development of new treatment approaches for various diseases such as cancer. Nanotechnology advances can potentially minimize the side effects of drugs through the employment of effective and controlled drug delivery systems (DDSs). Polymers are optimal tools providing drug delivery mechanisms through the unique features of pharmacokinetics, circulation time, biocompatibility, and biodegradability. This systematic review aimed to evaluate polymer-based DDSs for anticancer drugs and their various therapeutic applications in cancer treatment. This study was conducted with no time limitation by November 2021. Related articles were collected through a deep search in English and Persian databases of SID, MagIran, Scopus, Web Of Science (WoS), PubMed, Science Direct, and Google Scholar. Keywords included drug delivery system, anticancer agent, polymeric nanostructure-based drug delivery, polymer-based drug delivery, and polymeric system. As the results showed, polymeric nanoparticles (PNPs) have influential roles in cancer treatment than conventional chemotherapy procedures. PNPs can reduce cytotoxicity following chemotherapy drug administration, improve the solubility characteristics of these therapeutic agents and inhibit the rate of tumor growth.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Polímeros/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA