Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 358: 142130, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685320

RESUMEN

Phosphorus (P) and Ammonium Nitrogen (N) are essential nutrients for plants and environmental stability. However, their excess in water causes eutrophication, damaging aquatic ecosystems. While adsorption is a promising solution, finding affordable and efficient adsorbents remains a challenge. In this study, magnesium (Mg), iron (Fe), and Mg/Fe doped biochars (BC) adsorbents were synthesized, and evaluated for adsorption of individual P and N and a P + N mixture from a solution and wastewater from a wastewater treatment plant. Compared to other adsorbents, Mg/BC showed excellent performance in adsorbing phosphorus (P) and ammonium nitrogen (N) from aqueous solutions. It demonstrated a large adsorption capacity of 64.65 mg/g and 62.50 mg/g from individual P and N solutions, and 30.3 mg/g and 27.67 mg/g from the P and N mixture solution, respectively. In addition, Mg/BC efficiently removed P and N from real-life wastewater. In the real wastewater, P and N removal efficiencies reached 88.30% and 59.36%, respectively. Kinetics analysis revealed that the pseudo-second-order model accurately described the adsorption of phosphorus (P) and ammonium nitrogen (N) in all solutions. The adsorbent followed the monolayer-Langmuir isotherm for N ions and the multilayer-Freundlich isotherm for P, indicating efficient adsorption processes. Thermodynamic experiments indicated that the adsorption of P and N was not only feasible but also occurred spontaneously in a natural manner. This study revealed that the strategic modification of biochar plays a crucial role in advancing effective wastewater treatment technologies designed for nutrient removal.


Asunto(s)
Carbón Orgánico , Magnesio , Nitrógeno , Fosfatos , Aguas Residuales , Contaminantes Químicos del Agua , Carbón Orgánico/química , Adsorción , Nitrógeno/química , Magnesio/química , Contaminantes Químicos del Agua/química , Fosfatos/química , Aguas Residuales/química , Cinética , Eliminación de Residuos Líquidos/métodos , Fósforo/química , Purificación del Agua/métodos
2.
Heliyon ; 9(9): e19830, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810020

RESUMEN

Efficient treatment of nutrient-rich wastewater is of paramount importance for protecting the ecosystem. In this work, an efficient, abundant, and eco-friendly adsorbent was derived from biochar and employed for phosphorus (P) adsorption. The key factors influencing the P removal efficiency of the activated biochar, including P concentration, pH, dosage, temperature, adsorption time, and influence of co-existing ion type, were investigated. Maximum P adsorption percentage (100%) was obtained with 10 mg/L and zinc chloride activated biochar (BC-Zn) compared to the other activated biochars. Results show that by increasing the P concentration from 5 to 200 mg/L, the phosphorus adsorption capacity increases from 0.13 to 10.4 mg/g biochar. Isotherms and kinetic studies further show that the P adsorption follows the Langmuir and quasi-second-order kinetic models. The mechanistic investigation demonstrated that P adsorption occurred by precipitation reaction. Furthermore, P desorption has been studied at different time intervals to understand the P release rate after adsorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA