Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 933963, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837016

RESUMEN

Myosin VI (MVI) is a unique unconventional myosin ubiquitously expressed in metazoans. Its diverse cellular functions are mediated by interactions with a number of binding partners present in multi-protein complexes. MVI is proposed to play important roles in muscle function and myogenesis. Previously, we showed that MVI is present in striated muscles and myogenic cells, and MVI interacts with A-kinase anchoring protein 9 (AKAP9), a scaffold for PKA and its regulatory proteins. Since PKA directly phosphorylates the MVI cargo binding domain, we hypothesized that the cellular effects of MVI are mediated by the cAMP/PKA signaling pathway, known to play important roles in skeletal muscle metabolism and myogenesis. To elucidate the potential role of MVI in PKA signaling in hindlimb muscle function, we used mice lacking MVI (Snell's waltzer, SV), considered as natural MVI knockouts, and heterozygous littermates. We used muscles isolated from newborn (P0) as well as 3- and 12-month-old adult mice. We observed a significant increase in the muscle to body mass ratio, which was most evident for the soleus muscle, as well as changes in fiber size, indicating alterations in muscle metabolism. These observations were accompanied by age-dependent changes in the activity of PKA and cAMP/PKA-dependent transcriptional factor (CREB). Additionally, the levels of adenylate cyclase isoforms and phosphodiesterase (PDE4) were age-dependent. Also, cAMP levels were decreased in the muscle of P0 mice. Together, these observations indicate that lack of MVI impairs PKA signaling and results in the observed alterations in the SV muscle metabolism, in particular in newborn mice.

2.
Front Neurosci ; 15: 692482, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720847

RESUMEN

Limb-girdle muscular dystrophy type R1 (LGMDR1) is caused by mutations in CAPN3 and is the most common type of recessive LGMD. Even with the use of whole-exome sequencing (WES), only one mutant allele of CAPN3 is found in a significant number of LGMDR patients. This points to a role of non-coding, intronic or regulatory, sequence variants in the disease pathogenesis. Targeted sequencing of the whole CAPN3 gene including not only intronic, 3' and 5' UTRs but also potential regulatory regions was performed in 27 patients suspected with LGMDR1. This group included 13 patients with only one mutated CAPN3 allele detected previously with exome sequencing. A second rare variant in the non-coding part of CAPN3 was found in 11 of 13 patients with previously identified single mutation. Intronic mutations were found in 10 cases, with c.1746-20C>G variant present in seven patients. In addition, a large deletion of exons 2-8 was found in one patient. In the patients with no causative mutation previously found, we detected rare CAPN3 variants in 5 out of 10 patients and in two of them in a compound heterozygous state. Rare variants within putative regulatory sequences distant from the CAPN3 gene were found in 15 patients, although in 11 of these cases, other variants are deemed causative. The results indicate that intronic mutations are common in Polish LGMDR patients, and testing for non-coding mutations in CAPN3 should be performed in apparently single heterozygous patients.

3.
Cells ; 9(7)2020 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664530

RESUMEN

We have previously postulated that unconventional myosin VI (MVI) could be involved in myoblast differentiation. Here, we addressed the mechanism(s) of its involvement using primary myoblast culture derived from the hindlimb muscles of Snell's waltzer mice, the natural MVI knockouts (MVI-KO). We observed that MVI-KO myotubes were formed faster than control heterozygous myoblasts (MVI-WT), with a three-fold increase in the number of myosac-like myotubes with centrally positioned nuclei. There were also changes in the levels of the myogenic transcription factors Pax7, MyoD and myogenin. This was accompanied by changes in the actin cytoskeleton and adhesive structure organization. We observed significant decreases in the levels of proteins involved in focal contact formation, such as talin and focal adhesion kinase (FAK). Interestingly, the levels of proteins involved in intercellular communication, M-cadherin and drebrin, were also affected. Furthermore, time-dependent alterations in the levels of the key proteins for myoblast membrane fusion, myomaker and myomerger, without effect on their cellular localization, were observed. Our data indicate that in the absence of MVI, the mechanisms controlling cytoskeleton organization, as well as myoblast adhesion and fusion, are dysregulated, leading to the formation of aberrant myotubes.


Asunto(s)
Citoesqueleto/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Animales , Adhesión Celular , Diferenciación Celular , Fusión Celular , Regulación de la Expresión Génica , Masculino , Fusión de Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL
4.
Sci Rep ; 9(1): 11533, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395899

RESUMEN

LGMD2L is a subtype of limb-girdle muscular dystrophy (LGMD), caused by recessive mutations in ANO5, encoding anoctamin-5 (ANO5). We present the analysis of five patients with skeletal muscle weakness for whom heterozygous mutations within ANO5 were identified by whole exome sequencing (WES). Patients varied in the age of the disease onset (from 22 to 38 years) and severity of the morphological and clinical phenotypes. Out of the nine detected mutations one was novel (missense p.Lys132Met, accompanied by p.His841Asp) and one was not yet characterized in the literature (nonsense, p.Trp401Ter, accompanied by p.Asp81Gly). The p.Asp81Gly mutation was also identified in another patient carrying a p.Arg758Cys mutation as well. Also, a c.191dupA frameshift (p.Asn64LysfsTer15), the first described and common mutation was identified. Mutations were predicted by in silico tools to have damaging effects and are likely pathogenic according to criteria of the American College of Medical Genetics and Genomics (ACMG). Indeed, molecular modeling of mutations revealed substantial changes in ANO5 conformation that could affect the protein structure and function. In addition, variants in other genes associated with muscle pathology were identified, possibly affecting the disease progress. The presented data indicate that the identified ANO5 mutations contribute to the observed muscle pathology and broaden the genetic spectrum of LGMD myopathies.


Asunto(s)
Anoctaminas/ultraestructura , Predisposición Genética a la Enfermedad , Músculo Esquelético/ultraestructura , Distrofia Muscular de Cinturas/genética , Adulto , Anoctaminas/genética , Canales de Cloruro/genética , Biología Computacional , Femenino , Heterocigoto , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/diagnóstico por imagen , Distrofia Muscular de Cinturas/patología , Mutación/genética , Fenotipo , Polonia/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA