Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 392, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013538

RESUMEN

The quality factor (Q-factor) is an important parameter for mechanical resonant sensors, and the optimal values depend on its application. Therefore, Q-factor control is essential for microelectromechanical systems (MEMS). Conventional methods have some restrictions, such as additional and complicated equipment or nanoscale dimensions; thus, structural methods are one of the reasonable solutions for simplifying the system. In this study, we demonstrate Q-factor control using a variable phononic bandgap by changing the length of the periodic microstructure. For this, silicon microstructure is used because it has both periodicity and a spring structure. The bandgap change is experimentally confirmed by measuring the Q-factors of mechanical resonators with different resonant frequencies. The bandgap range varies depending on the extended structure length, followed by a change in the Q-factor value. In addition, the effects of the periodic structure on the Q-factor enhancement and the influence of stress on the structural length were evaluated. Although microstructures can improve the Q-factors irrespective of periodicity; the result of the periodic microstructure is found to be efficient. The proposed method is feasible as the novel Q-factor control technique has good compatibility with conventional MEMS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA