Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 95(1): 321-336, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910239

RESUMEN

Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001-770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the "misleading" in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.


Asunto(s)
Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Determinación de Punto Final , Proyectos de Investigación , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Forma de la Célula/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Fosforilación , Medición de Riesgo , Proteína p53 Supresora de Tumor/metabolismo
2.
Mutagenesis ; 35(6): 445-452, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33219664

RESUMEN

In vitro genotoxicity studies are a quick and high throughput approach to assess the genotoxic potential of chemicals; however, the reliability of these tests and their relevance to in vivo effects depends on the choice of representative cell line and optimisation of assay conditions. For chemicals like urethane that require specific metabolic activation to cause genotoxicity, it is important that in vitro tests are conducted using cell lines exhibiting the activity and induction of CYP450 enzymes, including CYP2E1 enzyme that is important in the metabolism of urethane, at a concentration representing actual or perceived chemical exposure. We compared 2D MCL-5 cells and HepG2 cells with 3D HepG2 hanging drop spheroids to determine the genotoxicity of urethane using the micronucleus assay. Our 2D studies with MCL-5 did not show any statistically significant genotoxicity [99% relative population doubling (RPD)] compared to controls for concentrations and time point tested in vitro. HepG2 cells grown as 2D indicated that exposure to urethane of up to 30 mM for 23 h did not cause any genotoxic effect (102% RPD) but, at higher concentrations, genotoxicity was produced with only 89-85% RPD. Furthermore, an exposure of 20-50 mM for 23 h using 3D hanging drop spheroid assays revealed a higher MN frequency, thus exhibiting in vitro genotoxicity of urethane in metabolically active cell models. In comparison with previous studies, this study indicated that urethane genotoxicity is dose, sensitivity of cell model (2D vs. 3D) and exposure dependent.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Uretano/toxicidad , Biomarcadores , Técnicas de Cultivo de Célula , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Respiración de la Célula/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos/métodos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Esferoides Celulares
3.
Arch Toxicol ; 92(2): 935-951, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29110037

RESUMEN

Human exposure to carcinogens occurs via a plethora of environmental sources, with 70-90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens' adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Carcinógenos/toxicidad , Linfocitos/efectos de los fármacos , Mutágenos/toxicidad , Línea Celular , Humanos , Pruebas de Micronúcleos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
ACS Nano ; 7(7): 6129-37, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23773085

RESUMEN

Assessing dose in nanoparticle-cell interactions is inherently difficult due to a complex multiplicity of possible mechanisms and metrics controlling particle uptake. The fundamental unit of nanoparticle dose is the number of particles internalized per cell; we show that this can be obtained for large cell populations that internalize fluorescent nanoparticles by endocytosis, through calibration of cytometry measurements to transmission electron microscopy data. Low-throughput, high-resolution electron imaging of quantum dots in U-2 OS cells is quantified and correlated with high-throughput, low-resolution optical imaging of the nanoparticle-loaded cells. From the correlated data, we obtain probability distribution functions of vesicles per cell and nanoparticles per vesicle. Sampling of these distributions and comparison to fluorescence intensity histograms from flow cytometry provide the calibration factor required to transform the cytometry metric to total particle dose per cell, the mean value of which is 2.4 million. Use of the probability distribution functions to analyze particle partitioning during cell division indicates that, while vesicle inheritance is near symmetric, highly variable vesicle loading leads to a highly asymmetric particle dose within the daughter cells.


Asunto(s)
Interpretación Estadística de Datos , Endocitosis/fisiología , Citometría de Flujo/métodos , Microscopía Fluorescente/métodos , Nanopartículas/análisis , Nanopartículas/química , Vesículas Transportadoras/química , Proliferación Celular
5.
PLoS One ; 7(7): e40835, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22829889

RESUMEN

An automated technique for the identification, tracking and analysis of biological cells is presented. It is based on the use of nanoparticles, enclosed within intra-cellular vesicles, to produce clusters of discrete, point-like fluorescent, light sources within the cells. Computational analysis of these light ensembles in successive time frames of a movie sequence, using k-means clustering and particle tracking algorithms, provides robust and automated discrimination of live cells and their motion and a quantitative measure of their proliferation. This approach is a cytometric version of the moving light display technique which is widely used for analyzing the biological motion of humans and animals. We use the endocytosis of CdTe/ZnS, core-shell quantum dots to produce the light displays within an A549, epithelial, lung cancer cell line, using time-lapse imaging with frame acquisition every 5 minutes over a 40 hour time period. The nanoparticle moving light displays provide simultaneous collection of cell motility data, resolution of mitotic traversal dynamics and identification of familial relationships allowing construction of multi-parameter lineage trees.


Asunto(s)
Nanopartículas/química , Nanotecnología/métodos , Compuestos de Cadmio/química , Línea Celular Tumoral , Proliferación Celular , Humanos , Modelos Teóricos , Puntos Cuánticos , Sulfuros/química , Telurio/química , Compuestos de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA