Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acc Chem Res ; 57(18): 2678-2688, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39190683

RESUMEN

ConspectusCarbon-based two-dimensional (2D) functional materials exhibit potential across a wide spectrum of applications from chemical separations to catalysis and energy storage and conversion. In this Account, we focus on recent advances in the manipulation of 2D carbonaceous materials and their composites through computational design and simulations to address how the precise control over material structure at the atomic level correlates with enhanced functional properties such as gas permeation, selectivity, membrane transport, and charge storage. We highlight several key concepts in the computational design and tuning of 2D structures, such as controlled stacking, ion gating, interlayer pillaring, and heterostructure charge transfer.The process of creating and adjusting pores within graphene sheets is vital for effective molecular separation. Simulations show the power of controlling the offset distance between layers of porous graphene in precisely regulating the pore size to enhance gas separation and entropic selectivity. This strategy of controlled stacking extends beyond graphene to include covalent organic frameworks (COFs) such as covalent triazine frameworks (CTFs). Experimental assembly of the layers has been achieved through electrostatic interactions, thermal transformation, and control of side chain interactions.Graphene can interface with ionic liquids in various forms to enhance its functionality. A computational proof-of-concept showcases an ion-gating concept in which the interaction of anions with the pores in graphene allows the anions to dynamically gate the pores for selective gas transport. Realization of the concept has been achieved in both porous graphene and carbon molecular sieve membranes. Ionic liquids can also intercalate between graphene layers to form interlayer pillaring structures, opening the slit space. Grand canonical Monte Carlo simulations show that these structures can be used for efficient gas capture and separation. Experiments have demonstrated that the interlayer space can be tuned by the density of the pillars and that, when fully filled with ionic liquids and forming a confined interface structure, the graphene oxide membrane achieves much higher selectivity for gas separations. Moreover, graphene can interface with other 2D materials to form heterostructures where interfacial charge transfers take place and impact the function. Both ion transport and charge storage are influenced by both the local electric field and chemical interactions.Fullerene can be used as a building block and covalently linked together to construct a new type of 2D carbon material beyond a one-atom-thin layer that also has long-range-ordered subnanometer pores. The interstitial sites among fullerenes form funnel-shaped pores of 2.0-3.3 Å depending on the crystalline phase. The quasi-tetragonal phases are shown by molecular dynamics simulations to be efficient for H2 separation. In addition, defects such as fullerene vacancies can be introduced to create larger pores for the separation of organic solvents.In conclusion, the key to imputing functions to 2D carbonaceous materials is to create new interactions and interfaces and to go beyond a single-atom layer. First-principles and molecular simulations can further guide the discovery of new 2D carbonaceous materials and interfaces and provide atomistic insights into their functions.

2.
Nano Lett ; 23(16): 7470-7476, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37540493

RESUMEN

Hydrogen separation membranes are a critical component in the emerging hydrogen economy, offering an energy-efficient solution for the purification and production of hydrogen gas. Inspired by the recent discovery of monolayer covalent fullerene networks, here we show from concentration-gradient-driven molecular dynamics that quasi-square-latticed monolayer fullerene membranes provide the best pore size match, a unique funnel-shaped pore, and entropic selectivity. The integration of these attributes renders these membranes promising for separating H2 from larger gases such as CO2 and O2. The ultrathin membranes exhibit excellent hydrogen permeance as well as high selectivity for H2/CO2 and H2/O2 separations, surpassing the 2008 Robeson upper bounds by a large margin. The present work points toward a promising direction of using monolayer fullerene networks as membranes for high-permeance, selective hydrogen separation for processes such as water splitting.

3.
FASEB J ; 37(8): e23063, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37401890

RESUMEN

Sepsis-induced myocardial depression (SIMD) is common in pediatric intensive care units and seriously threatens children's health. Recently, long noncoding RNAs (lncRNAs) have been showed to play important roles in various diseases; however, its role in SIMD is unclear. In this study, we used lipopolysaccharide (LPS)-treated rats and H9c2 cardiomyocytes to mimic SIMD in vivo and in vitro. We found that the expression of a novel lncRNA, we named lncRNA-AABR07066529.3, was elevated in LPS-induced rat heart tissue and H9c2 cardiomyocytes. In addition, LPS-induced inflammation, apoptosis, and pyroptosis were significantly exacerbated after lncRNA-AABR07066529.3 knockdown. Moreover, we found that myeloid differentiation factor 88 (MyD88) was upregulated in LPS-treated groups and was inhibited by lncRNA-AABR07066529.3. Besides, MyD88 knockdown abolished lncRNA-AABR07066529.3 silencing effects on inflammation, apoptosis, and pyroptosis induced by LPS in H9c2 cardiomyocytes. In our study, we found lncRNA-AABR07066529.3 exerted protective effects on LPS-induced cardiomyocytes by regulating MyD88 and might serve as a potential treatment target for SIMD.


Asunto(s)
Cardiomiopatías , MicroARNs , ARN Largo no Codificante , Animales , Ratas , Apoptosis , Cardiomiopatías/metabolismo , Depresión , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/farmacología , MicroARNs/genética , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Miocitos Cardíacos/metabolismo , Piroptosis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
J Cell Mol Med ; 26(12): 3423-3445, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35567290

RESUMEN

Obesity, which has unknown pathogenesis, can increase the frequency and seriousness of acute myocardial infarction (AMI). This study evaluated effect of Huayu Qutan Recipe (HQR) pretreatment on myocardial apoptosis induced by AMI by regulating mitochondrial function via PI3K/Akt/Bad pathway in rats with obesity. For in vivo experiments, 60 male rats were randomly divided into 6 groups: sham group, AMI group, AMI (obese) group, 4.5, 9.0 and 18.0 g/kg/d HQR groups. The models fed on HQR with different concentrations for 2 weeks before AMI. For in vitro experiments, the cardiomyocytes line (H9c2) was used. Cells were pretreated with palmitic acid (PA) for 24 h, then to build hypoxia model followed by HQR-containing serum for 24 h. Related indicators were also detected. In vivo, HQR can lessen pathohistological damage and apoptosis after AMI. In addition, HQR improves blood fat levels, cardiac function, inflammatory factor, the balance of oxidation and antioxidation, as well as lessen infarction in rats with obesity after AMI. Meanwhile, HQR can diminish myocardial cell death by improving mitochondrial function via PI3K/Akt/Bad pathway activation. In vitro, HQR inhibited H9c2 cells apoptosis, improved mitochondrial function and activated the PI3K/Akt/Bad pathway, but effects can be peripeteiad by LY294002. Myocardial mitochondrial dysfunction occurs following AMI and can lead to myocardial apoptosis, which can be aggravated by obesity. HQR can relieve myocardial apoptosis by improving mitochondrial function via the PI3K/Akt/Bad pathway in rats with obesity.


Asunto(s)
Infarto del Miocardio , Fosfatidilinositol 3-Quinasas , Animales , Apoptosis , Masculino , Mitocondrias/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley
5.
Small ; 17(30): e2101008, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34151515

RESUMEN

The catalytic properties of supported metal heterostructures critically depend on the design of metal sites. Although it is well-known that the supports can influence the catalytic activities of metals, precisely regulating the metal-support interactions to achieve highly active and durable catalysts still remain challenging. Here, the authors develop a support effect in the oxide-supported metal monomers (involving Pt, Cu, and Ni) catalysts by means of engineering nitrogen-assisted nanopocket sites. It is found that the nitrogen-permeating process can induce the reconstitution of vacancy interface, resulting in an unsymmetrical atomic arrangement around the vacancy center. The resultant vacancy framework is more beneficial to stabilize Pt monomers and prevent diffusion, which can be further verified by the density functional theory calculations. The final Pt-N/SnO2 catalysts exhibit superior activity and stability for HCHO response (26.5 to 15 ppm). This higher activity allows the reaction to proceed at a lower operating temperature (100 °C). Incorporated with wireless intelligent-sensing system, the Pt-N/SnO2 catalysts can further achieve continuous monitoring of HCHO levels and cloud-based terminal data storage.


Asunto(s)
Óxidos , Platino (Metal) , Catálisis
6.
J Am Chem Soc ; 141(27): 10590-10594, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31188590

RESUMEN

Herein, we report a novel carbothermal welding strategy to prepare atomically dispersed Pd sites anchored on a three-dimensional (3D) ZrO2 nanonet (Pd1@ZrO2) via two-step pyrolysis, which were evolved from isolated Pd sites anchored on linker-derived nitrogen-doped carbon (Pd1@NC/ZrO2). First, the NH2-H2BDC linkers and Zr6-based [Zr6(µ3-O)4(µ3-OH)4]12+ nodes of UiO-66-NH2 were transformed into amorphous N-doped carbon skeletons (NC) and ZrO2 nanoclusters under an argon atmosphere, respectively. The NC supports can simultaneously reduce and anchor the Pd sites, forming isolated Pd1-N/C sites. Then, switching the argon to air, the carbonaceous skeletons are gasified and the ZrO2 nanoclusters are welded into a rigid and porous nanonet. Moreover, the reductive carbon will result in abundant oxygen (O*) defects, which could help to capture the migratory Pd1 species, leaving a sintering-resistant Pd1@ZrO2 catalyst via atom trapping. This Pd1@ZrO2 nanonet can act as a semi-homogeneous catalyst to boost the direct synthesis of indole through hydrogenation and intramolecular condensation processes, with an excellent turnover frequency (1109.2 h-1) and 94% selectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA