Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
2.
Front Immunol ; 13: 887054, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558078

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus that causes great economic losses globally to the swine industry. Innate immune RNA receptors mainly sense it during infection. As a DNA sensor, cyclic GMP-AMP synthase (cGAS) plays an important role in sensing cytosolic DNA and activating innate immunity to induce IFN-I and establish an antiviral cellular state. In contrast, the role of innate immune DNA sensors during PRRSV infection has not been elucidated. In this study, we found that cGAS facilitates the production of IFN-ß during PRRSV infection. Western blot and virus titer assays suggested that cGAS overexpression suppressed the replication of multiple PRRSV strains, while knockout of cGAS increased viral titer and nucleocapsid protein expression. Besides, our results indicated that the mitochondria were damaged during PRRSV infection and leaked mitochondrial DNA (mtDNA) into the cytoplasm. The mtDNA in the cytoplasm co-localizes with the cGAS, and the cGAMP activity was increased when the cGAS was overexpressed during PRRSV infection. Furthermore, the cGAMP also possesses an anti-PRRSV effect. These results indicate for the first time that cGAS restricts PRRSV replication by sensing the mtDNA in the cytoplasm to increase cGAMP activity, which not only explains the molecular mechanism by which cGAS inhibits PRRSV replication but also provides research ideas for studying the role of the cGAS-STING signaling pathway in the process of RNA virus infection.


Asunto(s)
Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Nucleótidos Cíclicos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos
3.
Vet Microbiol ; 251: 108916, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33197868

RESUMEN

PA-X is a fusion protein encoded by a +1 frameshifted open reading frame (X-ORF) in PA gene. The X-ORF can be translated in full-length (61 amino acids, aa) or truncated (41 aa) form. However, the role of C-Terminal 20 aa of PA-X in virus function has not yet been fully elucidated. To this end, we constructed the contemporary influenza viruses with full and truncated PA-X by reverse genetics to compare their replication and pathogenicity. The full-length PA-X virus in MDCK and human A549 cells conferred 10- to 100-fold increase in viral replication, and more virulent and caused more severe inflammatory responses in mice relative to corresponding truncated PA-X virus, suggesting that the terminal 20 aa could play a role in enhancing viral replication and contribute to virulence.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , Proteínas Represoras/genética , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Células A549 , Animales , Línea Celular , Perros , Femenino , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Riñón/citología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Proteínas Represoras/metabolismo , Porcinos , Enfermedades de los Porcinos/virología , Proteínas no Estructurales Virales/metabolismo , Virulencia
4.
PeerJ ; 8: e9735, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32944419

RESUMEN

Novel porcine circovirus type 3 (PCV3), first identified in the United States, has been detected in many other countries. Porcine circovirus is associated with postweaning multisystemic wasting syndrome, reproductive failure, congenital tremors, and other clinical symptoms. In this study, we established a double polymerase chain reaction assay for detecting both porcine circovirus type 2 (PCV2) and PCV3. This is the first study to detect and characterize the PCV3 genome in the Tianjin region of North China. We collected a total of 169 tissue samples from seven farms between 2016 and 2018. The PCV3-positive rate of all tissue samples was 37.3% (63/169) and the rate of PCV2 and PCV3 coinfection was 14.8% (25/169). PCV2 and PCV3 coinfections with more serious clinical symptoms were found in only three farms. We sequenced three PCV3 strains selected from tissue samples that were positively identified. The complete genome sequences of the three strains shared 97.6-99.4% nucleotide identities with the PCV3 strains in GenBank. Our results showed the extent of PCV3's spread in Tianjin, and the need to further study PCV3's pathobiology, epidemiology, isolation, and coinfection.

5.
Vet Microbiol ; 246: 108724, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32605742

RESUMEN

The classical swine (CS) H1N1 swine influenza virus (SIVs) emerged in humans as a reassortant virus that caused the H1N1 influenza virus pandemic in 2009, and the European avian-like (EA) H1N1 SIVs has caused several human infections in European and Asian countries. Development of the influenza vaccines that could provide effective protective efficacy against SIVs remains a challenge. In this study, the bivalent reassortant inactivated vaccine comprised of SH1/PR8 and G11/PR8 arboring the hemagglutinin (HA) and neuraminidase (NA) genes from prevalent CS and EA H1N1 SIVs and six internal genes from the A/Puerto Rico/8/34(PR8) virus was developed. The protective efficacy of this bivalent vaccine was evaluated in mice challenged with the lethal doses of CS and EA H1N1 SIVs. The result showed that univalent inactivated vaccine elicited high-level antibody against homologous H1N1 viruses while cross-reactive antibody responses to heterologous H1N1 viruses were not fully effective. In a mouse model, the bivalent inactivated vaccine conferred complete protection against lethal challenge doses of EA SH1 virus or CS G11 virus, whereas the univalent inactivated vaccine only produced insufficient protection against heterologous SIVs. In conclusion, our data demonstrated that the reassortant bivalent inactivated vaccine comprised of SH1/PR8 and G11/PR8 could provide effective protection against the prevalent EA and CS H1N1 subtype SIVs in mice.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Virus Reordenados/inmunología , Animales , Reacciones Cruzadas/inmunología , Femenino , Inmunogenicidad Vacunal , Vacunas contra la Influenza/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Genética Inversa , Organismos Libres de Patógenos Específicos , Vacunas de Productos Inactivados/inmunología
6.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31896589

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen that affects the pig industry, is a highly genetically diverse RNA virus. However, the phylogenetic and genomic recombination properties of this virus have not been completely elucidated. In this study, comparative analyses of all available genomic sequences of North American (NA)-type PRRSVs (n = 355, including 138 PRRSV genomes sequenced in this study) in China and the United States during 2014-2018 revealed a high frequency of interlineage recombination hot spots in nonstructural protein 9 (NSP9) and the GP2 to GP3 regions. Lineage 1 (L1) PRRSV was found to be susceptible to recombination among PRRSVs both in China and the United States. The recombinant major parent between the 1991-2013 data and the 2014-2018 data showed a trend from complex to simple. The major recombination pattern changed from an L8 to L1 backbone during 2014-2018 for Chinese PRRSVs, whereas L1 was always the major backbone for US PRRSVs. Intralineage recombination hot spots were not as concentrated as interlineage recombination hot spots. In the two main clades with differential diversity in L1, NADC30-like PRRSVs are undergoing a decrease in population genetic diversity, NADC34-like PRRSVs have been relatively stable in population genetic diversity for years. Systematic analyses of insertion and deletion (indel) polymorphisms of NSP2 divided PRRSVs into 25 patterns, which could generate novel references for the classification of PRRSVs. The results of this study contribute to a deeper understanding of the recombination of PRRSVs and indicate the need for coordinated epidemiological investigations among countries.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant swine diseases. However, the phylogenetic and genomic recombination properties of the PRRS virus (PRRSV) have not been completely elucidated. In this study, we systematically compared differences in the lineage distribution, recombination, NSP2 polymorphisms, and evolutionary dynamics between North American (NA)-type PRRSVs in China and in the United States. Strikingly, we found high frequency of interlineage recombination hot spots in nonstructural protein 9 (NSP9) and in the GP2 to GP3 region. Also, intralineage recombination hot spots were scattered across the genome between Chinese and US strains. Furthermore, we proposed novel methods based on NSP2 indel patterns for the classification of PRRSVs. Evolutionary dynamics analysis revealed that NADC30-like PRRSVs are undergoing a decrease in population genetic diversity, suggesting that a dominant population may occur and cause an outbreak. Our findings offer important insights into the recombination of PRRSVs and suggest the need for coordinated international epidemiological investigations.


Asunto(s)
Polimorfismo Genético , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Recombinación Genética , Proteínas Virales/genética , Animales , China/epidemiología , Filogeografía , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Síndrome Respiratorio y de la Reproducción Porcina/genética , Porcinos , Estados Unidos/epidemiología
7.
Antiviral Res ; 173: 104652, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751590

RESUMEN

Both classical swine fever (CSF) and pseudorabies are highly contagious, economically significant diseases of swine in China. Although vaccination with the C-strain against classical swine fever virus (CSFV) is widely carried out and severe outbreaks of CSF seldom occur in China, CSF is sporadic in many pig herds and novel sub-subgenotypes of CSFV endlessly emerge. Thus, new measures are needed to eradicate CSFV from Chinese farms. The emergence of a pseudorabies virus (PRV) variant also posed a new challenge for the control of swine pseudorabies. Here, the recombinant PRV strain JS-2012-ΔgE/gI-E2 expressing E2 protein of CSFV was developed by inserting the E2 expression cassette into the intergenic region between the gG and gD genes of the gE/gI-deletion PRV variant strain JS-2012-ΔgE/gI. The recombinant virus was stable when passaged in vitro. A single vaccination of JS-2012-ΔgE/gI-E2 via intramuscular injection fully protected against lethal challenges of PRV and CSFV. Vaccination of piglets with the recombinant JS-2012-ΔgE/gI-E2 in the presence of high levels of maternally derived antibodies (Abs) to PRV can provide partial protection against lethal challenge of CSFV. Vaccination of the recombinant PRV JS-2012-ΔgE/gI-E2 strain did not induce the production of Abs to the gE protein of PRV or to the CSFV proteins other than E2. Thus, JS-2012-ΔgE/gI-E2 appears to be a promising recombinant marker vaccine candidate against PRV and CSFV for the control and eradication of the PRV variant and CSFV.


Asunto(s)
Peste Porcina Clásica/prevención & control , Expresión Génica , Vectores Genéticos/genética , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/inmunología , Seudorrabia/prevención & control , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Antivirales/inmunología , Peste Porcina Clásica/inmunología , Peste Porcina Clásica/patología , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/inmunología , Orden Génico , Herpesvirus Suido 1/patogenicidad , Seudorrabia/inmunología , Seudorrabia/patología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunación , Vacunas Virales/genética , Vacunas Virales/inmunología
8.
Biochem Biophys Res Commun ; 519(2): 330-336, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31514997

RESUMEN

Pseudorabies virus (PRV), the agent of pseudorabies, has raised considerable attention since 2011 due to the outbreak of emerging PRV variants in China. In the present study, we obtained two monoclonal antibodies (mAbs) known as 2E5 and 5C3 against the glycoprotein E (gE) of a PRV variant (JS-2012 strain). The two mAbs reacted with wild PRV but not the vaccine strain (gE-deleted virus). The 2E5 was located in 161RLRRE165, which was conserved in almost of all PRV strains, while 5C3 in 148EMGIGDY154 was different from almost of all genotype I PRV, in which the 149th amino acid is methionine (M) instead of arginine (R). The two epitopes peptides located in the hydrophilic region and reacted with positive sera against genotype II PRV (JS-2012), which suggests they were likely dominant B-cell epitopes. Furthermore, the mutant peptide 148ERGIGDY154 (genotype I) did not react with the mAb 5C3 or positive sera against genotype II PRV (JS-2012). In conclusion, both mAb 2E5 and 5C3 could be used to identify wild PRV strains from vaccine strains, and mAb 5C3 and the epitope peptide of 5C3 might be used for epidemiological investigation to distinguish genotype II from genotype I PRV.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Epítopos de Linfocito B/inmunología , Herpesvirus Suido 1/química , Proteínas del Envoltorio Viral/inmunología , Animales , Línea Celular , Chlorocebus aethiops , Herpesvirus Suido 1/efectos de los fármacos , Herpesvirus Suido 1/inmunología , Ratones , Péptidos/farmacología , Porcinos , Células Vero , Proteínas del Envoltorio Viral/antagonistas & inhibidores
9.
Vet Microbiol ; 233: 140-146, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31176400

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is caused by PRRS virus (PRRSV), and is characterized by respiratory diseases in piglet and reproductive disorders in sow. Identification of sustainable and effective measures to mitigate PRRSV transmission is a pressing problem. The nucleocapsid (N) protein of PRRSV plays a crucial role in inhibiting host innate immunity during PRRSV infection. In the current study, a new host-restricted factor, tripartite motif protein 25 (TRIM25), was identified as an inhibitor of PRRSV replication. Co-immunoprecipitation assay indicated that the PRRSV N protein interferes with TRIM25-RIG-I interactions by competitively interacting with TRIM25. Furthermore, N protein inhibits the expression of TRIM25 and TRIM25-mediated RIG-I ubiquitination to suppress interferon ß production. Furthermore, with increasing TRIM25 expression, the inhibitory effect of N protein on the ubiquitination of RIG-I diminished. These results indicate for the first time that TRIM25 inhibits PRRSV replication and that the N protein antagonizes the antiviral activity by interfering with TRIM25-mediated RIG-I ubiquitination. This not only provides a theoretical basis for the development of drugs to control PRRSV replication, but also better explains the mechanism through which the PRRSV N protein inhibits innate immune responses of the host.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Proteínas de la Nucleocápside/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Proteínas de Motivos Tripartitos/antagonistas & inhibidores , Proteínas de Motivos Tripartitos/genética , Ubiquitinación , Secuencias de Aminoácidos , Animales , Línea Celular , Chlorocebus aethiops , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Proteínas de la Nucleocápside/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Unión Proteica , ARN Interferente Pequeño , Transducción de Señal/inmunología , Porcinos , Transfección , Replicación Viral
10.
Vet Res ; 49(1): 103, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30290850

RESUMEN

In the original publication of this article [1], the author found the brand of vimentin antibody was wrong in Fig. 3. The legend of Fig. 3, 'mouse anti-vimentin mAb (Cell Signaling Technology) at 4 °C overnight' should be 'mouse anti-vimentin mAb (Sigma-Aldrich) at 4 °C overnight'.

11.
Biochem Biophys Res Commun ; 504(1): 157-163, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30172377

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) has been a major threat to global industrial pig farming ever since its emergence in the late 1980s. Identification of sustainable and effective control measures against PRRSV transmission is a pressing problem. The nucleocapsid (N) protein of PRRSV is specifically localized in the cytoplasm and nucleus of virus-infected cells which is important for PRRSV replication. In the current study, a new host restricted factor, Moloney leukemia virus 10-like protein (MOV10), was identified as an inhibitor of PRRSV replication. N protein levels and viral replication were significantly reduced in Marc-145 cells stably overexpressing MOV10 compared with those in wild-type Marc-145 cells. Adsorption experiments revealed that MOV10 did not affect the attachment and internalization of PRRSV. Co-immunoprecipitation and immunofluorescence co-localization analyses showed that MOV10 interacted and co-localized with the PRRSV N protein in the cytoplasm. Notably, MOV10 affected the distribution of N protein in the cytoplasm and nucleus, leading to the retention of N protein in the former. Taken together, these findings demonstrate for the first time that MOV10 inhibits PRRSV replication by restricting the nuclear import of N protein. These observations have great implications for the development of anti-PRRSV drugs and provide new insight into the role of N protein in PRRSV biology.


Asunto(s)
Citoplasma/metabolismo , Proteínas de la Nucleocápside/química , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , ARN Helicasas/metabolismo , Replicación Viral , Crianza de Animales Domésticos , Animales , Línea Celular , Chlorocebus aethiops , Replicación del ADN , Células HEK293 , Humanos , Virus de la Leucemia Murina de Moloney/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Unión Proteica , Porcinos , Proteínas no Estructurales Virales/metabolismo
12.
Vet Microbiol ; 222: 75-84, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30080677

RESUMEN

Swine influenza A viruses (SIVs) causing outbreaks of acute, highly contagious respiratory disease in pigs also pose a potential threat to public health. European avian-like H1N1 (EA H1N1) SIVs are the predominant circulating viruses in pigs in China and also occasionally cause human infection. In this study, a high-growth reassortant virus (SH1/PR8), with HA and NA genes from a representative EA H1N1 isolate A/Swine/Shanghai/1/2014 (SH1) in China and six internal genes from the high-growth A/Puerto Rico/8/34 (PR8) virus, was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of inactivated vaccine. The protective efficacy of inactivated SH1/PR8 was evaluated in mice and pigs challenged with wild-type SH1 virus. After primer and boost vaccination, the SH1/PR8 vaccine induced high-level hemagglutination inhibiting (HI) antibodies, IgG antibodies, and neutralization antibodies in mice and pigs. Mice and pigs in the vaccinated group showed less clinical phenomena and pathological changes than those in the unvaccinated group. In conclusion, the inactivated high-growth reassortant vaccine SH1/PR8 could induce high antibody levels and complete protection is expected against SH1 wild type SIV, and protection against heterologous EA H1N1 SIV needs further evaluation.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunas de Productos Inactivados/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Aves/virología , China/epidemiología , Humanos , Inmunoglobulina G/sangre , Subtipo H1N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/administración & dosificación , Gripe Aviar/prevención & control , Gripe Aviar/virología , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Gripe Humana/virología , Ratones , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Virus Reordenados/genética , Virus Reordenados/crecimiento & desarrollo , Genética Inversa , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Vacunación , Vacunas de Productos Inactivados/administración & dosificación
13.
Transbound Emerg Dis ; 65(6): 1740-1748, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30024111

RESUMEN

Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS), which emerged in China in 2006, was characterized by high fever, high morbidity and high mortality. The causative agent of the disease was a highly pathogenic variant of porcine reproductive and respiratory syndrome virus (also called HP-PRRSV), which has a discontinuous deletion of 1 + 29 amino acids (aa) in the Nsp2 coding region, compared to classical PRRSV. In 2014, fattened pigs on a pig farm in Jiangxi Province suffered from clinical symptoms of high fever, dyspnoea and death. A PRRSV, termed JX2014T2, was isolated from samples of the dead pigs. Genomic analysis of the isolated PRRSV indicated that the genome of the virus was 14,960 bp in length and belonged to the North American genotype. In the Nsp2-coding region, there was a discontinuous deletion of 1 + 29 aa, similar to HP-PRRSV; however, an additional continuous deletion of 120 amino acids between aa 628 and 747 was found. Further analysis of the pathogenicity of PRRSV JX2014T2 was performed in piglets, and the results indicated that all infected piglets suffered from typical clinical symptoms of PRRS, such as high fever, cough, mental depression, anorexia, dyspnoea and palpebral swelling and died within 15 days postinfection (dpi). This demonstrated that the newly isolated PRRSV JX2014T2 strain containing an additional deletion of 120 aa is highly pathogenic to piglets, suggesting that a highly pathogenic variant with new genetic features is circulating in China.


Asunto(s)
Secuencia de Aminoácidos , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Eliminación de Secuencia , Proteínas Virales/genética , Animales , China , Genoma Viral/genética , Filogenia , Porcinos
14.
Vet Res ; 49(1): 75, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30053894

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is an important globally distributed and highly contagious pathogen that has restricted cell tropism in vivo and in vitro. In the present study, we found that annexin A2 (ANXA2) is upregulated expressed in porcine alveolar macrophages infected with PRRSV. Additionally, PRRSV replication was significantly suppressed after reducing ANXA2 expression in Marc-145 cells using siRNA. Bioinformatics analysis indicated that ANXA2 may be relevant to vimentin, a cellular cytoskeleton component that is thought to be involved in the infectivity and replication of PRRSV. Co-immunoprecipitation assays and confocal analysis confirmed that ANXA2 interacts with vimentin, with further experiments indicating that the B domain (109-174 aa) of ANXA2 contributes to this interaction. Importantly, neither ANXA2 nor vimentin alone could bind to PRRSV and only in the presence of ANXA2 could vimentin interact with the N protein of PRRSV. No binding to the GP2, GP3, GP5, nor M proteins of PRRSV was observed. In conclusion, ANXA2 can interact with vimentin and enhance PRRSV growth. This contributes to the regulation of PRRSV replication in infected cells and may have implications for the future antiviral strategies.


Asunto(s)
Anexina A2/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Vimentina/metabolismo , Replicación Viral , Animales , Unión Proteica , Porcinos
15.
Monoclon Antib Immunodiagn Immunother ; 37(2): 69-72, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29630477

RESUMEN

The purified whole-virus proteins derived from A/swine/Shanghai/1/2014 (H1N1) (SH1) were chosen to immunize BALB/c mice to prepare the monoclonal antibody (MAb) against hemagglutinin (HA) protein of an European avian-like (EA) H1N1 swine influenza virus (SIV). After cloning three times by limiting dilution, one strain of hybridoma cells named 3C7 secreting anti-HA protein MAb was obtained by hybridoma technique. The results of indirect immunofluorescence assay and western blot analyses showed that the MAb 3C7 specifically reacted with the HA protein of EA H1N1 SIV. This work indicated that the MAb 3C7 would be a valuable tool as a specific diagnostic reagent for SIV epidemiological surveys and identification of HA protein epitopes of the EA H1N1 SIVs in the future.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Anticuerpos Antivirales/biosíntesis , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Subtipo H1N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/química , Anticuerpos Antivirales/aislamiento & purificación , Fusión Celular , China/epidemiología , Perros , Europa (Continente)/epidemiología , Femenino , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Hibridomas/química , Hibridomas/inmunología , Inmunización Secundaria , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Bazo/citología , Bazo/inmunología , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología
16.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321316

RESUMEN

Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) possesses greater replicative capacity and pathogenicity than classical PRRSV. However, the factors that lead to enhanced replication and pathogenicity remain unclear. In our study, an alignment of all available full-length sequences of North American-type PRRSVs (n = 204) revealed two consistent amino acid mutations that differed between HP-PRRSV and classical PRRSV and were located at positions 519 and 544 in nonstructural protein 9. Next, a series of mutant viruses with either single or double amino acid replacements were generated from HP-PRRSV HuN4 and classical PRRSV CH-1a infectious cDNA clones. Deletion of either of the amino acids led to a complete loss of virus viability. In both Marc-145 and porcine alveolar macrophages, the replicative efficiencies of mutant viruses based on HuN4 were reduced compared to the parent, whereas the replication level of CH-1a-derived mutant viruses was increased. Plaque growth assays showed clear differences between mutant and parental viruses. In infected piglets, the pathogenicity of HuN4-derived mutant viruses, assessed through clinical symptoms, viral load in sera, histopathology examination, and thymus atrophy, was reduced. Our results indicate that the amino acids at positions 519 and 544 in NSP9 are involved in the replication efficiency of HP-PRRSV and contribute to enhanced pathogenicity. This study is the first to identify specific amino acids involved in PRRSV replication or pathogenicity. These findings will contribute to understanding the molecular mechanisms of PRRSV replication and pathogenicity, leading to better therapeutic and prognostic options to combat the virus.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV), is a significant threat to the global pig industry. Highly pathogenic PRRSV (HP-PRRSV) first emerged in China in 2006 and has subsequently spread across Asia, causing considerable damage to local economies. HP-PRRSV strains possess a greater replication capacity and higher pathogenicity than classical PRRSV strains, although the mechanisms that underlie these characteristics are unclear. In the present study, we identified two mutations in HP-PRRSV strains that distinguish them from classical PRRSV strains. Further experiments that swapped the two mutations in an HP-PRRSV strain and a classical PRRSV strain demonstrated that they are involved in the replication efficiency of the virus and its virulence. Our findings have important implications for understanding the molecular mechanisms of PRRSV replication and pathogenicity and also provide new avenues of research for the study of other viruses.


Asunto(s)
Mutación Missense , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Proteínas no Estructurales Virales , Replicación Viral/genética , Sustitución de Aminoácidos , Animales , Línea Celular , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/patología , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Porcinos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
17.
Res Vet Sci ; 117: 54-56, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29175013

RESUMEN

PB2-627K is an important amino acid that determines the virulence of some influenza A viruses. However, it has not been experimentally investigated in the H3N2 swine influenza virus. To explore the potential role of PB2-K627E substitution in H3N2 swine influenza virus, the growth properties and pathogenicity between H3N2 swine influenza virus and its PB2-K627E mutant were compared. For the first time, our results showed that PB2-K627E mutation attenuates H3N2 swine influenza virus in mammalian cells and in mice, suggesting that PB2-627K is required for viral replication and pathogenicity of H3N2 swine influenza virus.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Proteínas Virales/genética , Animales , Células Cultivadas , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Ratones , Mutación , ARN Polimerasa Dependiente del ARN/genética , Virulencia/genética , Replicación Viral/genética , Replicación Viral/fisiología
18.
Vet Microbiol ; 208: 164-172, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28888632

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) has caused huge economic losses to Chinese swine industry and remains a major threat since it was first reported in 1996. However, investigations of molecular epidemiological and genetic diversity of PRRS viruses (PRRSVs) in China were limited to a small number of representative strains collected in several areas. Moreover, lineage classifications reported by individual researchers were quite different. In the present study, we sequenced ORF5 sequences of 217 PRRSVs from clinical samples, retrieved all the available ORF5 sequences of PRRSVs isolated in China in 1996-2016 (n=2213) from GenBank, and systematically analyzed corresponding epidemiological data. NA-type PRRSVs in China were classified into five lineages: lineage 1, lineage 3, lineage 5, lineage 8, and lineage 9. Most strains in China belonged to lineage 8 (85.6%), with dominant strains being classified as sublineage 8.3 (78.3%). Importantly, the emerging lineage 1 and lineage 3 strains spread rapidly, and their proportions among circulating PRRSVs have significantly increased in recent years. The geographical distribution of different PRRSV lineages in each province was analyzed and possible inter-province transmission routes were outlined for main lineages and sublineages. To our knowledge, this study is the most comprehensive and extensive phylogeographical analysis of PRRSVs in China since PRRS outbreak in 1996. Our dataset can serve as a canonical standard for PRRSV classification and will help to study genetic evolution of PRRSV. The results of the present study may also improve prevention of PRRS in China.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Animales , China/epidemiología , Variación Genética , Genotipo , Filogenia , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , ARN Viral/genética , Porcinos
19.
Vet Microbiol ; 208: 97-105, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28888658

RESUMEN

A newly emerged pseudorabies virus (PRV) variant has been identified in many Bartha-K61-vaccinated pig farms. This variant has caused great economic losses to the swine industry in China since 2011. Sequence analysis demonstrated that the gB gene of the emerging PRV variant JS-2012 had multiple variations compared with the vaccine strain Bartha-K61. In the study, a specific CRISPR/Cas9 system combined with homologous recombination was used to construct two recombinant viruses, BJB (Bartha-K61+JS-2012gB) and JBJ (JS-2012-ΔgE/gI+Bartha-K61gB), by interchanging the full-length gB genes between Bartha-K61 and JS-2012-ΔgE/gI. The two recombinant viruses showed similar characteristics in growth kinetics in vitro and similar pathogenicity in mice, as compared to their parental strains. Immunization of mice with inactivated BJB or JBJ followed by challenge of JS-2012 showed that BJB could increase protective efficacy to 80%, compared to only 40% protection by the parental Bartha-K61 strain. JBJ had a decreased protective efficacy of 65%, as compared to 90% protection by its parental JS-2012-ΔgE/gI strain. Exchange of the gB gene markedly altered the immunogenicity of the recombinant PRV. These data suggest that variations in gB might play an important role in the virulence of the reemergent PRV variant in China. Our results demonstrate the importance of gB in protective immunity and suggest that the recombinant virus BJB could be a promising vaccine candidate for eradication of the PRV variant.


Asunto(s)
Variación Genética , Glicoproteínas/genética , Herpesvirus Suido 1/genética , Seudorrabia/inmunología , Enfermedades de los Porcinos/virología , Animales , Anticuerpos Neutralizantes , Línea Celular , Regulación Viral de la Expresión Génica , Herpesvirus Suido 1/inmunología , Ratones , Seudorrabia/mortalidad , Seudorrabia/virología , Porcinos , Enfermedades de los Porcinos/inmunología
20.
Vet Microbiol ; 205: 66-70, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28622865

RESUMEN

Swine influenza viruses have been circulating in pigs throughout world and might be potential threats to human health. PA-X protein is a newly discovered protein produced from the PA gene by ribosomal frameshifting and the effects of PA-X on the 1918 H1N1, the pandemic 2009 H1N1, the highly pathogenic avian H5N1 and the avian H9N2 influenza viruses have been reported. However, the role of PA-X in the pathogenesis of swine influenza virus is still unknown. In this study, we rescued the H1N1 wild-type (WT) classical swine influenza virus (A/Swine/Guangdong/1/2011 (H1N1)) and H1N1 PA-X deficient virus containing mutations at the frameshift motif, and compared their replication properties and pathogenicity of swine influenza virus in vitro and in vivo. Our results show that the expression of PA-X inhibits virus replication and polymerase activity in cultured cells and decreases virulence in mouse models. Therefore, our study demonstrates that PA-X protein acts as a negative virulence regulator for classical H1N1 swine influenza virus and decreases virulence by inhibiting viral replication and polymerase activity, deepening our understanding of the pathogenesis of swine influenza virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , Proteínas Represoras/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Ratones , Ratones Endogámicos BALB C , Mutación , Proteínas Represoras/genética , Porcinos , Proteínas no Estructurales Virales/genética , Virulencia , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA