Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (205)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497633

RESUMEN

The applicability of biopolymer micro-/nano- technology in human, veterinary medicine, pharmaceutical, and food technology is rapidly growing due to the great potential of biopolymer-based particles as effective carrier systems. The use of lignin as a basic heteropolymer biomatrix for the design of innovative micro-/submicron formulations allows the achievement of increased biocompatibility and offers various active functional groups presenting opportunities for customization of the physicochemical properties and bioactivities of the formulations for diverse applications. The aim of the present study was to develop a simple and ecofriendly methodology for the synthesis of lignin particles with micro- and submicron size; to evaluate their physicochemical, spectral, and structural characteristics; and to examine their capacity for encapsulation of biologically active molecules and potential for in vitro release of bioflavonoids in simulated gastrointestinal media. The presented methodologies apply cheap and green solvents; easy, straightforward, quick, and sensitive processes requiring little equipment, non-toxic substances, and simple methods for their characterization, the determination of encapsulation capacity towards the poorly water-soluble bioactive compounds morin and quercetin, and the in vitro release potential of the lignin matrices.


Asunto(s)
Lignina , Farmacia , Humanos , Flavonoides , Álcalis , Polímeros
2.
Foods ; 13(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397582

RESUMEN

Consumers associate the color of food with its freshness and quality. More and more attention is being paid to natural colorants that bring additional health benefits to humans. Such natural substances are the carotenoids (yellow to orange), the anthocyanins (red to blue), and the betalains (red and yellow), which are very sensitive to exposure to light, air, high temperatures, and chemicals. Stability and diversity in terms of color can be optimized by using environmentally friendly and selective extraction processes that provide a balance between efficacy, safety, and stability of the resulting extracts. Green solvents like water, supercritical fluids, natural deep eutectic solvents, and ionic liquids are the most proper green solvents when combined with different extraction techniques like maceration, supercritical extraction, and ultrasound-assisted or microwave-assisted extraction. The choice of the right extracting agent is crucial for the selectivity of the extraction method and the stability of the prepared colorant. The present work reviews the green solvents used for the extraction of natural food colorants from plants and focuses on the issues related to the selectivity and stability of the products extracted.

3.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38003457

RESUMEN

Vitamin K3 (menadione), classified as a pro-vitamin, is a synthetic form of the fat-soluble family of vitamin K compounds. The combination of the vitamin with other molecules sharing structural and/or functional similarities, such as naturally occurring polyphenols, vitamins, or biopolymers, could potentiate mutual improvement of their antioxidant activity. The aim of the present study was to evaluate the role and contribution of vitamin K3 to the in vitro radical scavenging capacity of double and triple combinations with the phytochemicals naringenin and lignin, as well as assess possible intermolecular interactions between the bioactive compounds. Comparative analyses of the DPPH and ABTS radical scavenging activity of the pure substances vitamin K3, naringenin, and lignin; the two-component systems lignin/vitamin K3 and vitamin K3/naringenin; and the triple combination vitamin K3/flavonoid/lignin were carried out. The experimental results demonstrated increased DPPH and ABTS activities of the vitamin in combination with lignin compared to those of the two pure substances, i.e., a synergistic effect was observed. The registered significant increases in the radical scavenging activity of the triple combination determined via both methods are indicative of a remarkable potentiation effect, i.e., higher antioxidant potential exceeding the additive activity of the three pure substances.


Asunto(s)
Lignina , Vitamina K 3 , Vitamina K 3/farmacología , Vitamina K , Antioxidantes/farmacología , Vitaminas , Fitoquímicos/farmacología
4.
Pharmaceutics ; 15(4)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37111553

RESUMEN

The aim of the present study was to synthesize lignin microparticles, to evaluate their physicochemical, spectral, morphological and structural characteristics, to examine their encapsulation and in vitro release potential and behaviour towards the flavonoid morin in simulated physiological medium and to assess the in vitro radical-scavenging potential of the morin-loaded lignin microcarrier systems. The physicochemical, structural and morphological characteristics of alkali lignin, lignin particles (LP) and morin-encapsulated lignin microparticles (LMP) were determined based on particle size distribution, SEM, UV/Vis spectrophotometric, FTIR and potentiometric titration analyses. The encapsulation efficiency of LMP was 98.1%. The FTIR analyses proved that morin was successfully encapsulated in the LP without unexpected chemical reactions between the flavonoid and the heteropolymer. The in vitro release performance of the microcarrier system was successfully mathematically described by Korsmeyer-Peppas and the sigmoidal models outlining the general role of diffusion during the initial stages of the in vitro release process in simulated gastric fluid (SGF), and the predominant contribution of biopolymer relaxation and erosion was determined in simulated intestinal medium (SIF). The higher radical-scavenging potential of LMP, as compared to that of LP, was proven via DPPH and ABTS assays. The synthesis of lignin microcarriers not only provides a facile approach for the utilization of the heteropolymer but also determines its potential for the design of drug-delivery matrices.

5.
Antibiotics (Basel) ; 11(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35625293

RESUMEN

As natural biopolymers, chitosan and lignin are characterized by their good biocompatibility, high biodegradability and satisfactory biosafety. The active polymers' functional groups are responsible for the potential of these biomaterials for use as carrier matrices in the construction of polymer−drug conjugates with prospective applicability in the fields of medicine, food and agriculture­subjects that have attracted attention in recent years. Hence, the aim of this research was to place substantial emphasis on the antimicrobial potential of flavonoid−biopolymer complex systems by assessment of the probable synergetic, additive or antagonistic effects arising as a function of systemic complexity. The joint implementation of morin, chitosan and lignin in conjugated two- and three-component systems provoked species-dependent antimicrobial synergistic and/or potentiation effects against the activity of the tested bacterial strains Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and the clinical isolate Bacillus cereus. The double combinations of morin−chitosan and morin−lignin resulted in a 100% increase in their inhibitory activity against S. aureus as compared to the pure biocompounds. The inhibitory effects of the three-component system, in decreasing order, were: S. aureus (IZ = 15.7 mm) > P. aeruginosa (IZ = 15 mm) > B. cereus and E. coli (IZ = 14 mm). All tested morin-containing two- and three-component systems exhibited clear and significant potentiation effects, especially against S. aureus and B. cereus. The results obtained are a prerequisite for the potential use of the studied conjugated lignin−morin−chitosan combinations in the construction of novel drug-carrier formulations with improved bioactivities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA