Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5918, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467682

RESUMEN

The pituitary functions as a master endocrine gland that secretes hormones critical for regulation of a wide variety of physiological processes including reproduction, growth, metabolism and stress responses. The distinct hormone-producing cell lineages within the pituitary display remarkable levels of cell plasticity that allow remodeling of the relative proportions of each hormone-producing cell population to meet organismal demands. The molecular mechanisms governing pituitary cell plasticity have not been fully elucidated. Our recent studies have implicated a role for the Musashi family of sequence-specific mRNA binding proteins in the control of pituitary hormone production, pituitary responses to hypothalamic stimulation and modulation of pituitary transcription factor expression in response to leptin signaling. To date, these actions of Musashi in the pituitary appear to be mediated through translational repression of the target mRNAs. Here, we report Musashi1 directs the translational activation, rather than repression, of the Prop1, Gata2 and Nr5a1 mRNAs which encode key pituitary lineage specification factors. We observe that Musashi1 further directs the translational activation of the mRNA encoding the glycolipid Neuronatin (Nnat) as determined both in mRNA reporter assays as well as in vivo. Our findings suggest a complex bifunctional role for Musashi1 in the control of pituitary cell function.


Asunto(s)
Hipófisis , Proteínas de Unión al ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Hipófisis/metabolismo , Procesamiento Proteico-Postraduccional , Hormonas Hipofisarias/metabolismo
2.
Neurotherapeutics ; 20(1): 272-283, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36207570

RESUMEN

X-linked adrenoleukodystrophy (ALD) is a genetic disorder that presents neurologically as either a rapid and fatal cerebral demyelinating disease in childhood (childhood cerebral adrenoleukodystrophy; ccALD) or slow degeneration of the spinal cord in adulthood (adrenomyeloneuropathy; AMN). All forms of ALD result from mutations in the ATP Binding Cassette Subfamily D Member (ABCD) 1 gene, encoding a peroxisomal transporter responsible for the import of very long chain fatty acids (VLCFA) and results mechanistically in a complex array of dysfunction, including endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, and inflammation. Few therapeutic options exist for these patients; however, an additional peroxisomal transport protein (ABCD2) has been successfully targeted previously for compensation of dysfunctional ABCD1. 4-Phenylbutyrate (4PBA), a potent activator of the ABCD1 homolog ABCD2, is FDA approved, but use for ALD has been stymied by a short half-life and thus a need for unfeasibly high doses. We conjugated 4PBA to hydroxyl polyamidoamine (PAMAM) dendrimers (D-4PBA) to a create a long-lasting and intracellularly targeted approach which crosses the blood-brain barrier to upregulate Abcd2 and its downstream pathways. Across two studies, Abcd1 knockout mice administered D-4PBA long term showed neurobehavioral improvement and increased Abcd2 expression. Furthermore, when the conjugate was administered early, significant reduction of VLCFA and improved survival of spinal cord neurons was observed. Taken together, these data show improved efficacy of D-4PBA compared to previous studies of free 4PBA alone, and promise for D-4PBA in the treatment of complex and chronic neurodegenerative diseases using a dendrimer delivery platform that has shown successes in recent clinical trials. While recovery in our studies was partial, combined therapies on the dendrimer platform may offer a safe and complete strategy for treatment of ALD.


Asunto(s)
Adrenoleucodistrofia , Encéfalo , Dendrímeros , Animales , Ratones , Adrenoleucodistrofia/tratamiento farmacológico , Adrenoleucodistrofia/genética , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/genética , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Dendrímeros/farmacología , Dendrímeros/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Ratones Noqueados
3.
Nanoscale ; 12(30): 16063-16068, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32724988

RESUMEN

Oligodendrocyte replacement using glial restricted precursors (GRPs) is a promising avenue for the treatment of acquired or genetic white matter disorders; however, limited long-term survival of these cells post-transplant may impede maximal recovery. Nanotherapeutic approaches can facilitate stem cell delivery while simultaneously delivering factors aimed at enhancing and nourishing stem cells en route to, and at, the target site. Hydroxyl polyamidoamine (PAMAM) dendrimer nanoparticles have been used in a variety of models to deliver therapeutics in a targeted manner to injury sites at low doses. Here, survival and migration of GRPs was assessed in a mouse model of neonatal white matter injury with different methods of dendrimer nanoparticle support. Our findings demonstrate the ability of GRPs to take up nanoparticle-drug conjugates and for these conjugates to act beyond the injury site in vivo. Compared to GRPs alone, mice receiving dendrimer-drug in parallel to GRPs, or via GRPs as the delivery vector, showed improved migration and differentiation of cells 8 weeks post-transplant. These studies demonstrate that drug-conjugated nanoparticles can enhance transplanted progenitor cell survival and migration, and suggest that combination therapies may allow engraftment without overt immunosuppression.


Asunto(s)
Dendrímeros , Sustancia Blanca , Acetilcisteína , Animales , Diferenciación Celular , Dendrímeros/farmacología , Ratones , Neuroglía
4.
Exp Neurol ; 326: 113164, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31887305

RESUMEN

Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a rare, slowly progressive white matter disease caused by mutations in the mitochondrial aspartyl-tRNA synthetase (mt-AspRS, or DARS2). While patients show characteristic MRI T2 signal abnormalities throughout the cerebral white matter, brainstem, and spinal cord, the phenotypic spectrum is broad and a multitude of gene variants have been associated with the disease. Here, Dars2 disruption in CamKIIα-expressing cortical and hippocampal neurons results in slowly progressive increases in behavioral activity at five months, and culminating by nine months as severe brain atrophy, behavioral dysfunction, reduced corpus callosum thickness, and microglial morphology indicative of neuroinflammation. Interestingly, RNAseq based gene expression studies performed prior to the presentation of this severe phenotype reveal the upregulation of several pathways involved in immune activation, cytokine production and signaling, and defense response regulation. RNA transcript analysis demonstrates that activation of immune and cell stress pathways are initiated in advance of a behavioral phenotype and cerebral deficits. An understanding of these pathways and their contribution to significant neuronal loss in CamKII-Dars2 deficient mice may aid in deciphering mechanisms of LBSL pathology.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Leucoencefalopatías/fisiopatología , Mitocondrias/enzimología , Animales , Atrofia , Conducta Animal , Encéfalo/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corteza Cerebral/metabolismo , Cuerpo Calloso/parasitología , Hipocampo/metabolismo , Leucoencefalopatías/genética , Leucoencefalopatías/psicología , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA