RESUMEN
Over the recent years, a particular interest was shown towards understanding the roles of excessive hepatic fat accumulation and the development of obesity-related diseases. While hepatic triacylglycerol accumulation seems to be a response to the systemic increase of insulin release, fatty acid metabolites contribute to the progression of non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). It is widely accepted that NAFLD is a polygenic and multifactorial disease under the influence of critical behavioral factors such as overeating and sedentary lifestyles. The progression of the disease is proposed to include the accumulation of lipids in hepatocytes, but liver damage would be mainly initiated through an exaggerated activation of the immune system. This inflammatory response would be triggered by the increase in cytokine production followed by TLR-4 activation and NF-kB pathways. Interestingly, cytokines as IL-1ra, IL-4, IL-6 and IL-10 act as antiinflammatory in response to exercise and thus, could play an important role in the restoration of liver functions in diseased conditions. Strategies for healthy life behaviors including nutrition and regular physical exercise are recommended to counteract the dreadful effects of NAFLD. To beyond the classical effect of exercise for increasing energy expenditure and/or inducing negative energy balance, exercise also prevents and reverses the effects of disorders related to the immunometabolic profile. This suggests that exercise prescription may be an attractive alternative for the prevention of obesity and NAFLD. Thus, this review seeks to shed light on the inflammatory pathways regulating the beneficial effects of physical activity on obesity and NAFLD. We will clarify how physical activity intervenes to normalize inflammatory processes and prevent obesity and NAFLD. Finally, the exercise interventions should be individualized to facilitate behavioral and cognitive strategies in order to promote long-term adherence. A multidisciplinary approach including lifestyles, diet and exercise training interventions is considered as a "best practice" and displays the strongest liver benefits when it occurs simultaneously with weight loss.
Asunto(s)
Ejercicio Físico/fisiología , Hepatocitos/inmunología , Hepatocitos/metabolismo , Obesidad/inmunología , Obesidad/metabolismo , Animales , HumanosRESUMEN
INTRODUÇÃO: Muitos trabalhos têm estudado o comportamento hormonal nos exercício resistido, entretanto poucos relacionam os hormônios cortisol, GH e insulina. OBJETIVO: Estudar os ajustes das concentrações plasmáticas dos hormônios cortisol, GH e insulina em exercícios resistidos de mesma intensidade com relação à massas musculares distintas. MÉTODOS: Dez voluntários, com 20,3 ± 4,2 anos, 74,1 ± 10,2 kg de peso, 177,2 ± 4,6 cm de estatura e 23,8 ± 3,2 kg/m2 de IMC, realizaram uma sessão de leg press (LP) e supino reto (SR) com quatro séries com 10 repetições a 70% 1 RM com três minutos de intervalo. Foram coletadas amostras de sangue para dosagem das concentrações plasmáticas de cortisol, GH e insulina em repouso (Pré) e em 0' (Rec. 0'), 30' (Rec. 30') e 90' (Rec. 90') de recuperação. RESULTADOS: As concentrações plasmáticas de cortisol foram significativamente reduzidas ao final da recuperação em LP (2,20±0,37 ng/dl para 1,33±0,38ng/dl) em relação à pré-dosagem. As concentrações de GH e insulina elevaram-se significativamente durante a recuperação. GH em LP foi significativamente maior em Rec. 0' (2,75±3,29 ng/ml para 9,60±5,32 ng/dl) do que em pré. A insulina elevou-se significativamente em Rec. 30' em LP (14,70±7,92 ulU/ml para 21,66 ± 8,61 ulU/ml) e em SR (6,17 ± 2,99 ulU/ml para 19,70 ± 13,8 ulU/ml) em relação à pré. As concentrações plasmáticas de insulina pré em LP foram significativamente superiores a SR (14,70 ulU/ml e 6,17 ± 2,99 ulU/ml). CONCLUSÃO: O exercício resistido promoveu diferentes ajustes nas concentrações hormonais de cortisol, GH e insulina durante o período de recuperação. .
INTRODUCTION: Many works have studied the hormonal behavior in resistance exercise, however, few relate the cortisol, GH and insulin hormones. OBJECTIVE: To study the adjustments of plasma concentrations of the cortisol, GH and insulin hormones in resisted exercises of the same relative intensity with different muscle musses. METHODS: Ten volunteers, aged 20.3 ± 4.2 years, weight 74.1 ± 10.2 Kg, 177.2 ± 4.6 cm of stature and 23.8 ± 3.2 Kg/m2 of BMI, underwent a session of leg press (LP) and bench press (BP) with four sets of 10 repetitions at 70% 1 RM with three minutes apart. We collected blood samples to measure plasma concentrations of cortisol, GH and insulin at rest (Pre) and 0' (Rec. 0'), 30' (Rec. 30') and 90' (Rec. 90') of recovery. RESULTS: Plasma concentrations of cortisol decreased significantly at the end of the recovery in LP (2.20 ± 0.37 ng/dl to 1.33 ± 0.38 ng/dl) compared to pre. The GH and insulin concentrations significantly increased during recovery. GH was significantly higher in LP Rec. 0' (2.75 ± 3.29 ng/ml to 9.60 ± 5.32 ng/dl) than in pre. Insulin was significantly elevated in Rec. 30' in LP (14.70 ± 7.92 ulU/ml to 21.66 ± 8.61 ulU/ml) and BP (6.17 ± 2.99 ulU/ml to 19.70 ± 13.8 ulU/ml) for pre. The plasma insulin concentrations pre PL were significantly higher in the BP (14.70 ulU/ml and 6.17 ± 2.99 ulU/ml). CONCLUSION: Resisted exercise promoted different adjustments in hormone concentrations of cortisol, GH and insulin during the recovery period. .
INTRODUCCIÓN: Muchos trabajos han estudiado el comportamiento hormonal en el ejercicio de resistencia, sin embargo, pocos se refieren el cortisol, GH y las hormonas insulina. OBJETIVO: Estudiar los ajustes de las concentraciones plasmáticas de las hormonas cortisol, GH e insulina en ejercicios resistidos, de igual intensidad, en relación con las masas musculares diferentes. MÉTODOS: Diez voluntarios, con 20,3 ± 4,2 años, 74,1 ± 10,2 kg de peso, 177,2 ± 4,6 cm de estatura y 23,8 ± 3,2 kg/m2 de IMC, realizaron una sesión de leg press (LP) y supino recto (SR) con cuatro series, de 10 repeticiones a 70% 1 RM, con tres minutos de intervalo. Se recolectaron muestras de sangre para dosificación de las concentraciones plasmáticas de cortisol, GH e insulina en reposo (Pré) y en 0' (Rec. 0'), 30' (Rec. 30') y 90' (Rec. 90') de recuperación. RESULTADOS: Las concentraciones plasmáticas de cortisol se redujeron significativamente al final de la recuperación en LP (2,20±0,37 ng/dl para 1,33±0,38ng/dl) en relación con la predosificación. Las concentraciones de GH e insulina aumentaron significativamente durante la recuperación. GH en LP fue significativamente mayor en Rec. 0' (2,75±3,29 ng/ml para 9,60±5,32 ng/dl) en comparación con la predosificación. La insulina se elevó significativamente en Rec. 30' en LP (14,70±7,92 ulU/ml para 21,66 ± 8,61 ulU/ml) y en SR (6,17 ± 2,99 ulU/ml para 19,70 ± 13,8 ulU/ml) en relación con la predosificación. Las concentraciones plasmáticas de insulina, predosificación, en LP fueron significativamente superiores a SR (14,70 ulU/ml y 6,17 ± 2,99 ulU/ml). CONCLUSIÓN: El ejercicio resistido causó diferentes ajustes en las concentraciones hormonales de cortisol, GH e insulina durante el período de recuperación. .
RESUMEN
OBJECTIVE: The objective of this study was to assess the effects of resistance training on oxidative stress markers in the livers of ovariectomized rats. METHOD: Adult Sprague-Dawley rats were divided into the following four groups (n = 8 per group): sham-operated sedentary, ovariectomized sedentary, sham-operated resistance training, and ovariectomized resistance training. During the resistance training period, the animals climbed a 1.1-m vertical ladder with weights attached to their tails; the sessions were conducted 3 times per week, with 4-9 climbs and 8-12 dynamic movements per climb. The oxidative stress was assessed by measuring the levels of reduced glutathione and oxidized glutathione, the enzymatic activity of catalase and superoxide dismutase, lipid peroxidation, vitamin E concentrations, and the gene expression of glutathione peroxidase. RESULTS: The results showed significant reductions in the reduced glutathione/oxidized glutathione ratio (4.11±0.65 nmol/g tec), vitamin E concentration (55.36±11.11 nmol/g), and gene expression of glutathione peroxidase (0.49±0.16 arbitrary units) in the livers of ovariectomized rats compared with the livers of unovariectomized animals (5.71±0.71 nmol/g tec, 100.14±10.99 nmol/g, and 1.09±0.54 arbitrary units, respectively). Moreover, resistance training for 10 weeks was not able to reduce the oxidative stress in the livers of ovariectomized rats and induced negative changes in the hepatic anti-oxidative/oxidative balance. CONCLUSION: Our findings indicate that the resistance training program used in this study was not able to attenuate the hepatic oxidative damage caused by ovariectomy and increased the hepatic oxidative stress.
Asunto(s)
Hígado/metabolismo , Ovariectomía , Estrés Oxidativo , Entrenamiento de Fuerza , Animales , Biomarcadores/metabolismo , Catalasa/análisis , Femenino , Glutatión/análisis , Peroxidación de Lípido , Condicionamiento Físico Animal/métodos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Factores de Tiempo , Resultado del Tratamiento , Vitamina E/análisisRESUMEN
OBJECTIVE: The objective of this study was to assess the effects of resistance training on oxidative stress markers in the livers of ovariectomized rats. METHOD: Adult Sprague-Dawley rats were divided into the following four groups (n = 8 per group): sham-operated sedentary, ovariectomized sedentary, sham-operated resistance training, and ovariectomized resistance training. During the resistance training period, the animals climbed a 1.1-m vertical ladder with weights attached to their tails; the sessions were conducted 3 times per week, with 4-9 climbs and 8-12 dynamic movements per climb. The oxidative stress was assessed by measuring the levels of reduced glutathione and oxidized glutathione, the enzymatic activity of catalase and superoxide dismutase, lipid peroxidation, vitamin E concentrations, and the gene expression of glutathione peroxidase. RESULTS: The results showed significant reductions in the reduced glutathione/oxidized glutathione ratio (4.11±0.65 nmol/g tec), vitamin E concentration (55.36±11.11 nmol/g), and gene expression of glutathione peroxidase (0.49±0.16 arbitrary units) in the livers of ovariectomized rats compared with the livers of unovariectomized animals (5.71±0.71 nmol/g tec, 100.14±10.99 nmol/g, and 1.09±0.54 arbitrary units, respectively). Moreover, resistance training for 10 weeks was not able to reduce the oxidative stress in the livers of ovariectomized rats and induced negative changes in the hepatic anti-oxidative/oxidative balance. CONCLUSION: Our findings indicate that the resistance training program used in this study was not able to attenuate the hepatic oxidative damage caused by ovariectomy and increased the hepatic oxidative stress. .