Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Res ; 68(6): 883-892, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31647296

RESUMEN

Oxidative stress and decline in cellular redox regulation have been hypothesized to play a key role in cardiovascular aging; however, data on antioxidant and redox regulating systems in the aging heart are controversial. The aim of the present study was to examine the effect of aging on critical antioxidant enzymes and two major redox-regulatory systems glutathione (GSH) and thioredoxin (Trx) system in hearts from adult (6-month-old), old (15-month-old), and senescent (26-month-old) rats. Aging was associated with a non-uniform array of changes, including decline in contents of reduced GSH and total mercaptans in the senescent heart. The activities of Mn-superoxide dismutase (SOD2), glutathione peroxidase (GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR) exhibited an age-related decline, whereas catalase was unchanged and Cu,Zn-superoxide dismutase (SOD1) displayed only slight decrease in old heart and was unchanged in the senescent heart. GR, Trx, and peroxiredoxin levels were significantly reduced in old and/or senescent hearts, indicating a diminished expression of these proteins. In contrast, SOD2 level was unchanged in the old heart and was slightly elevated in the senescent heart. Decline in GPx activity was accompanied by a loss of GPx level only in old rats, the level in senescent heart was unchanged. These results indicate age-related posttranslational protein modification of SOD2 and GPx. In summary, our data suggest that changes are more pronounced in senescent than in old rat hearts and support the view that aging is associated with disturbed redox balance that could alter cellular signaling and regulation.


Asunto(s)
Envejecimiento/metabolismo , Antioxidantes/metabolismo , Miocardio/enzimología , Animales , Antioxidantes/análisis , Glutatión Peroxidasa/análisis , Glutatión Peroxidasa/metabolismo , Masculino , Miocardio/química , Oxidación-Reducción , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
2.
J Physiol Pharmacol ; 69(6)2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30802212

RESUMEN

Elevated homocysteine (Hcy) level is a well known risk factor for cardiovascular and neuropsychiatric diseases. In this study, we investigated metabolic changes in blood plasma in Hcy-treated rats. In combination with Hcy injections to induce hyperhomocysteinemia-like state, we used an animal model of global cerebral ischemia to investigate metabolic changes after 24 h reperfusion in rats. We also focused on the endogenous phenomenon known as ischemic tolerance induced by the preischemic treatment. The experiments were carried out on blood plasma samples as they are easily available and metabolically reflect the overall changes in injured organism. We observed significant changes in plasma metabolite levels of: pyruvate, citrate, acetate implicating alterations in energy metabolism, and increase in triacylglycerols, arginine and lysine, in Hcy-treated rats compared with naive animals. Ischemic insult with 24 reperfusion in Hcy-treated rats led to increase in plasma lactate, and decrease in plasma glucose, pyruvate, citrate and acetate. Complementary, an increase in ketone body 3-hydroxybutyrate was observed. The plasma metabolites: alanine, lactate, valine, glucose, leucine, isoleucine, acetate, citrate and 3-hydroxybutyrate were considered to reflect the response induced by ischemic preconditioning in Hcy rats, where the extent of postischemic damage was not as high as in the non-preconditioned rats. Our results provide evidence that nuclear magnetic resonance (NMR) spectra analysis can identify a specific group of metabolites present in plasma with the capability of discriminating between individual groups of animals. Regarding the effect of elevated Hcy level on plasma metabolome, we showed, that acetate, pyruvate and glucose had the excellent discriminatory power between Hcy-treated and naive rats plasma. Concerning ischemic insult in Hcy-treated animals, we also document the ideal discrimination of ischemic from non-ischemic rats by various groups of metabolites, that can be considered as a potential plasma biomarkers.


Asunto(s)
Isquemia Encefálica/metabolismo , Metabolismo Energético , Homocisteína/sangre , Hiperhomocisteinemia/metabolismo , Animales , Biomarcadores/sangre , Modelos Animales de Enfermedad , Homocisteína/administración & dosificación , Precondicionamiento Isquémico/métodos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Metabolómica/métodos , Prosencéfalo/irrigación sanguínea , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA