Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 37(3): 333-337, 1998 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29711270

RESUMEN

A mechanical switch in a [2]catenane, made up of a cyclobis(paraquat-p-phenylene) tetracation interlocked with a macrocyclic polyether containing a redox-active tetrathiafulvalene (TTF) unit and a 1,5-dioxynaphthalene ring system, can be thrown either chemically or electrochemically. The neutral TTF unit resides "inside" the tetracationic cyclophane in the reduced state and "alongside" it in the oxidized species (TTF+ / TTF2+ ). Switching between the reduced (I4+ ) and oxidized state (I5+ (I6+ )) is accompanied by a dramatic color change.

2.
Angew Chem Int Ed Engl ; 37(7): 975-979, 1998 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29711472

RESUMEN

A color change from purple to green takes place on addition of tetrathiafulvalene (TTF) to the macrobicyclic receptor 14+ , which is composed of a cyclobis(paraquat-p-phenylene) tetracation that shares one of its paraphenylene rings with a 1,5-naphthoparaphenylene-[36]crown-10 macrocycle. The TTF molecule forces the macrobicycle to turn inside out (see schematic drawing below) and displaces the self-complexed 1,5-dioxynaphthalene ring system from the center of the tetracationic cyclophane.

3.
J Org Chem ; 62(1): 26-37, 1997 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-11671361

RESUMEN

A range of pi-electron-rich macrocyclic polyethers incorporating dioxybenzene (hydroquinone) and/or dioxynaphthalene units have been synthesized in good yields by simple two-step procedures. These macrocycles are able to bind bipyridinium-based guests as a result of a series of cooperative noncovalent bonding interactions. These molecular recognition events can be extended to the self-assembly of [2]catenanes incorporating the bipyridinium-based cyclophane, cyclobis(paraquat-p-phenylene), and the macrocyclic polyethers incorporating dioxybenzene and -naphthalene units. The efficiencies of these self-assembly processes were found to depend upon the stereoelectronic features of the pi-electron-rich macrocycles-namely, the nature and the substitution pattern of the aromatic units. X-ray crystallographic analysis of some of these [2]catenanes proved unequivocally the relative geometries of the interlocked components. In addition, in the case of those asymmetric [2]catenanes incorporating two different aromatic units within their macrocyclic polyether components, only one of the expected two translational isomers was observed in the solid state. In particular, in all the structures examined, the 1,4-dioxybenzene and 1,5-dioxynaphthalene units are located within the cavity of the tetracationic cyclophane component in preference to other regioisomeric dioxynaphthalene units that reside alongside. Variable-temperature (1)H NMR spectroscopic investigation of the geometries adopted by these [2]catenanes in solution revealed the same selectivity that was observed for one translational isomer over another in the solid state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA