Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930220

RESUMEN

This paper presents the results of the experimental research on diamond-reinforced composites with WC-Co matrices enhanced with a ZrO2 additive. The samples were prepared using a modified spark plasma sintering method with a directly applied alternating current. The structure and performance of the basic composite 94 wt.%WC-6 wt.%Co was compared with the ones with ZrO2 added in proportions up to 10 wt.%. It was demonstrated that an increase in zirconia content contributed to the intense refinement of the phase components. The composite 25 wt.%Cdiamond-70.5 wt.%WC-4.5 wt.%Co consisted of a hexagonal WC phase with lattice parameters a = 0.2906 nm and c = 0.2837 nm, a cubic phase (a = 1.1112 nm), hexagonal graphite phase (a = 0.2464 nm, c = 0.6711 nm), as well as diamond grits. After the addition of zirconia nanopowder, the sintered composite contained structural WC and Co3W3C phases, amorphous carbon, tetragonal phase t-ZrO2 (a = 0.36019 nm, c = 0.5174 nm), and diamond grits-these structural changes, after an addition of 6 wt.% ZrO2 contributed to an increase in the fracture toughness by more than 20%, up to KIc = 16.9 ± 0.76 MPa·m0.5, with a negligible decrease in the hardness. Moreover, the composite exhibited an alteration of the destruction mechanism after the addition of zirconia, as well as enhanced forces holding the diamond grits in the matrix.

2.
Materials (Basel) ; 17(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38591985

RESUMEN

Precision manufacturing requirements are the key to ensuring the quality and reliability of biomedical implants. The powder bed fusion (PBF) technique offers a promising solution, enabling the creation of complex, patient-specific implants with a high degree of precision. This technology is revolutionizing the biomedical industry, paving the way for a new era of personalized medicine. This review explores and details powder bed fusion 3D printing and its application in the biomedical field. It begins with an introduction to the powder bed fusion 3D-printing technology and its various classifications. Later, it analyzes the numerous fields in which powder bed fusion 3D printing has been successfully deployed where precision components are required, including the fabrication of personalized implants and scaffolds for tissue engineering. This review also discusses the potential advantages and limitations for using the powder bed fusion 3D-printing technology in terms of precision, customization, and cost effectiveness. In addition, it highlights the current challenges and prospects of the powder bed fusion 3D-printing technology. This work offers valuable insights for researchers engaged in the field, aiming to contribute to the advancement of the powder bed fusion 3D-printing technology in the context of precision manufacturing for biomedical applications.

3.
Materials (Basel) ; 16(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138779

RESUMEN

In the present study, the bioactivity, cytotoxicity, and tribological properties of a nickel-free austenitic stainless steel produced via the mechanical alloying of elemental iron, chromium, and manganese nitride powders following by hot isostatic pressing was investigated. Powders after 90 h of mechanical alloying were consolidated via hot isostatic pressing at 1150 °C (1425 K) and heat treated at 1175 °C (1448 K) for 1 h in a vacuum with furnace cooling. Tribological tests were performed to determine the resistance of the as-received nickel-free steel. It was noticed that applying heat treatment after hot isostatic pressing decreases the average friction coefficient and wear rate of the austenitic steel. An immersion test in a simulated body fluid for 28 days at 37 ± 1 °C has been used to determine the biocompatibility of the tested material. The SEM-EDS analysis allowed us to characterise the morphology of the films and the elements of the steel on the thin-film layer. Elements typical of apatite (calcium and phosphorus) were detected on the surface of the sample. Cellular toxicity tests showed no significant toxic side effects for Saos-2 human osteosarcoma cells and the number of Saos-2 human osteosarcoma cells on the nickel-free steel was greater than on the 316LV grade steel.

4.
Materials (Basel) ; 13(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333887

RESUMEN

This paper presents selected numerical and experimental results of a study investigating the process of forming hollow stepped gear shafts from tubes by rotary compression. The objective of the study was to determine whether the rotary compression process is an effective method of producing hollow stepped gear shafts and to identify limitations of this manufacturing method. A theoretical analysis involved the numerical modeling of the proposed process by the finite element method (FEM). 3D simulations were performed using the commercial simulation software package Simufact Forming. The analysis involved examining the material flow pattern along with thermal and force parameters of the process. The FEM results were verified with experimental tests conducted under laboratory conditions. The experiments were performed on a machine specially designed for the rotary compression of hollow parts. Results demonstrate that it is difficult to form a stepped gear shaft in one operation. For this reason, such parts should be formed in two operations. The first operation involves the forming of a hollow stepped shaft by rotary compression, while in the second operation, a gear is formed on one of the steps of the shaft.

5.
Sensors (Basel) ; 19(24)2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31847421

RESUMEN

High-frequency electromagnetic fields can have a negative effect on both the human body and electronic devices. The devices and systems utilized in radio communications constitute the most numerous sources of electromagnetic fields. The following research investigates values of the electric component of electromagnetic field intensification determined with the ESM 140 dosimeter during the flights of four aircrafts-Cessna C152, Cessna C172, Aero AT3 R100, and Robinson R44 Raven helicopter-from the airport in Depultycze Krolewskie near Chelm, Poland. The point of reference for the obtained results were the normative limits of the electromagnetic field that can affect a pilot in the course of a flight. The maximum value registered by the dosimeter was E = 3.307 V/m for GSM 1800 frequencies.


Asunto(s)
Aeronaves , Campos Electromagnéticos , Humanos , Dosímetros de Radiación , Ondas de Radio
6.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842450

RESUMEN

The performance of a PZL 104 Wilga 35A airplane was determined and analyzed in this work. Takeoff and landing distances were determined by means of two different methods: one which utilized a Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) sensor and another in which airplane ground speed was measured with the use of an optical non-contact sensor. Based on the airfield measurements, takeoff and landing distances as well as rolling resistance coefficients were determined for the used airplane on a grassy runway at the Radawiec airfield, located near Lublin, southeast Poland. The study was part of the "GARFIELD" project that is expected to deliver an online information system on grassy airfield conditions. It was concluded that both sensors were suitable for the aimed research. The results obtained in this study showed the effects of high grass upon the takeoff and landing performances of the test airplane. Also, the two methods were compared against each other, and the final results were compared to calculations of ground distances by means of the chosen analytical models.

7.
Materials (Basel) ; 12(14)2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319492

RESUMEN

The article presents the issue of material fracture during the process of cross-wedge rolling (CWR). The object of the research was the process of forming a harrow tooth preform. In the conducted analysis nine damage criteria were applied. The critical value of damage was determined with a new calibrating test, basing on rotational compression of a sample in a channel. The results of calculations were compared to the results of experimental testing performed in laboratory conditions in Lublin University of Technology. On the basis of the obtained results an assessment of the applied damage criteria and their applicability in the analysis of CWR processes was conducted.

8.
Sensors (Basel) ; 20(1)2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906132

RESUMEN

This paper describes airfield measurement of forces and moments that act on a landing gear wheel. For the measurement, a wheel force sensor was used. The sensor was designed and built based on strain gage technology and was embedded in the left landing gear wheel of a test aircraft. The sensor is capable of measuring simultaneously three perpendicular forces and three moments and sends data to a handheld device wirelessly. For the airfield tests, the sensor was installed on a PZL 104 Wilga 35A multipurpose aircraft. The aircraft was towed at a "marching man" speed and the measurements were performed at three driving modes: Free rolling, braking, and turning. The paper contains results obtained in the field measurements performed on a grassy runway of the Rzeszów Jasionka Aerodrome, Poland. Rolling resistance of aircraft tire, braking friction, as well as aligning moment were analyzed and discussed with respect to surface conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA