Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(24): 13069-13080, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37279356

RESUMEN

Lewis acid-catalyzed carbonyl-olefin metathesis has introduced a new means for revealing the behavior of Lewis acids. In particular, this reaction has led to the observation of new solution behaviors for FeCl3 that may qualitatively change how we think of Lewis acid activation. For example, catalytic metathesis reactions operate in the presence of superstoichiometric amounts of carbonyl, resulting in the formation of highly ligated (octahedral) iron geometries. These structures display reduced activity, decreasing catalyst turnover. As a result, it is necessary to steer the Fe-center away from inhibiting pathways to improve the reaction efficiency and augment yields for recalcitrant substrates. Herein, we examine the impact of the addition of TMSCl to FeCl3-catalyzed carbonyl-olefin metathesis, specifically for substrates that are prone to byproduct inhibition. Through kinetic, spectroscopic, and colligative experiments, significant deviations from the baseline metathesis reactivity are observed, including mitigation of byproduct inhibition as well as an increase in the reaction rate. Quantum chemical simulations are used to explain how TMSCl induces a change in catalyst structure that leads to these kinetic differences. Collectively, these data are consistent with the formation of a silylium catalyst, which induces the reaction through carbonyl binding. The FeCl3 activation of Si-Cl bonds to give the silylium active species is expected to have significant utility in enacting carbonyl-based transformations.

2.
Polyhedron ; 2082021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34566234

RESUMEN

A series of air-stable trigonal bipyramidal FeIII complexes supported by a redox non-innocent NNN pincer ligand, Cz tBu(PyrR)2 - (R = iPr, Me, or H), were synthesized, fully characterized, and utilized for the investigation of the interaction between acetone and the FeIII center. The magnetic moments determined from the paramagnetic 1H NMR spectra in conjunction with EPR and Mössbauer spectroscopy indicate the presence of a high-spin ferric center. Cyclic voltammetry studies feature two quasi-reversible events corresponding to a metal-centered FeIII/II reduction around -0.40 V (vs. Fc) and a ligand-centered Cz tBu(PyrR)2/Cz tBu(PyrR)2 •+ oxidation at potentials near +0.70 V (vs. Fc). UV-Visible spectroscopy in CH2Cl2 showcases ligand-metal charge transfer (LMCT) bands, as well as coordination of acetone to Cz tBu(PyrH)2FeCl2. In situ IR spectroscopy and solution conductivity (κ) measurements of Cz tBu(PyrR)2FeCl2 with varied equivalents of acetone reveal that acetone is weakly associated with the iron center.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA