Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 4(6): 1197-212, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24035394

RESUMEN

Patients with neurofibromatosis type 1 (NF1) and Costello syndrome Rasopathy have behavioral deficits. In NF1 patients, these may correlate with white matter enlargement and aberrant myelin. To model these features, we induced Nf1 loss or HRas hyperactivation in mouse oligodendrocytes. Enlarged brain white matter tracts correlated with myelin decompaction, downregulation of claudin-11, and mislocalization of connexin-32. Surprisingly, non-cell-autonomous defects in perivascular astrocytes and the blood-brain barrier (BBB) developed, implicating a soluble mediator. Nitric oxide (NO) can disrupt tight junctions and gap junctions, and NO and NO synthases (NOS1-NOS3) were upregulated in mutant white matter. Treating mice with the NOS inhibitor NG-nitro-L-arginine methyl ester or the antioxidant N-acetyl cysteine corrected cellular phenotypes. CNP-HRasG12V mice also displayed locomotor hyperactivity, which could be rescued by antioxidant treatment. We conclude that Nf1/Ras regulates oligodendrocyte NOS and that dysregulated NO signaling in oligodendrocytes can alter the surrounding vasculature. The data suggest that antioxidants may improve some behavioral deficits in Rasopathy patients.


Asunto(s)
Vaina de Mielina/metabolismo , Neurofibromina 1/deficiencia , Óxido Nítrico Sintasa/metabolismo , Oligodendroglía/metabolismo , Proteínas ras/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/enzimología , Vasos Sanguíneos/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Óxido Nítrico/metabolismo , Oligodendroglía/citología , Oligodendroglía/enzimología , Proteínas ras/genética
2.
J Neurophysiol ; 106(5): 2450-70, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21832035

RESUMEN

Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75-95% synaptic losses) and on the proximal 100 µm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons.


Asunto(s)
Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología , Terminales Presinápticos/metabolismo , Propiocepción/fisiología , Nervio Tibial/fisiopatología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Animales , Axones/metabolismo , Axones/fisiología , Axotomía , Biotina/análogos & derivados , Biotina/metabolismo , Dendritas/metabolismo , Dendritas/patología , Electromiografía , Potenciales Postsinápticos Excitadores/fisiología , Neuronas Motoras/patología , Músculo Esquelético/inervación , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuronas Aferentes/fisiología , Terminales Presinápticos/patología , Ratas , Ratas Wistar , Recuperación de la Función/fisiología , Reflejo de Estiramiento/fisiología , Nervio Tibial/lesiones , Nervio Tibial/patología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA