Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 24(24): 245402, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23702912

RESUMEN

New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.


Asunto(s)
Fuentes de Energía Bioeléctrica , Carbono/química , Lacasa/metabolismo , Nanotecnología/métodos , Nanotubos de Carbono/química , Resinas Acrílicas/química , Adsorción , Fibra de Carbono , Catálisis , Conductividad Eléctrica , Técnicas Electroquímicas , Electrodos , Nanotubos de Carbono/ultraestructura , Oxígeno/química , Espectrometría Raman , Temperatura , Trametes/enzimología
3.
J Phys Chem B ; 102(9): 1498-507, 1998 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-27577008

RESUMEN

A monolayer of a phosphonated triarylamine adsorbed on nanocrystalline TiO2, ZrO2, or Al2O3 film deposited on conducting glass displays reversible electrochemical and electrochromic behavior although the redox potential of the electroactive molecules (0.80 V vs NHE) lies in the forbidden band of the semiconducting or insulating oxides. The mechanism of charge transport was found to involve hole injection from the conducting support followed by lateral electron hopping within the monolayer. The apparent diffusion coefficient ranged from 2.8 × 10(-12) m(2) s(-1) in the neat 1-ethyl-2-methylimidazolium bis(trifluoromethylsulfonyl)imide (EtMeIm(+)Tf2N(-)) to 1.1 × 10(-11) m(2) s(-1) in acetonitrile + 2 M EtMeIm(+)Tf2N(-). A percolation threshold for electronic conductivity was found at a surface coverage corresponding to 50% of a full monolayer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA