Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros











Intervalo de año de publicación
1.
Physiol Rep ; 12(17): e70021, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39261977

RESUMEN

Many pathological conditions lead to defects in intestinal epithelial integrity and loss of barrier function; Sphingosine-1-phosphate (S1P) has been shown to augment intestinal barrier integrity, though the exact mechanisms are not completely understood. We have previously shown that overexpression of Sphingosine Kinase 1 (SphK1), the rate limiting enzyme for S1P synthesis, significantly increased S1P production and cell proliferation. Here we show that microRNA 495 (miR-495) upregulation led to decreased levels of SphK1 resultant from a direct effect at the SphK1 mRNA. Increasing expression of miR-495 in intestinal epithelial cells resulted in decreased proliferation and increased susceptibility to apoptosis. Transgenic expression of miR-495 inhibited mucosal growth, as well as decreased proliferation in the crypts. The intestinal villi also expressed decreased levels of barrier proteins and exaggerated damage upon exposure to cecal ligation-puncture. These results implicate miR-495 as a critical negative regulator of intestinal epithelial protection and proliferation through direct regulation of SphK1, the rate limiting enzyme critical for production of S1P.


Asunto(s)
Apoptosis , Mucosa Intestinal , Lisofosfolípidos , MicroARNs , Fosfotransferasas (Aceptor de Grupo Alcohol) , Esfingosina , MicroARNs/metabolismo , MicroARNs/genética , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Animales , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Mucosa Intestinal/metabolismo , Ratones , Proliferación Celular , Regulación hacia Abajo , Células Epiteliales/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
Am J Physiol Cell Physiol ; 327(3): C817-C829, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39099425

RESUMEN

Paneth cells at the bottom of small intestinal crypts secrete antimicrobial peptides, enzymes, and growth factors and contribute to pathogen clearance and maintenance of the stem cell niche. Loss of Paneth cells and their dysfunction occur commonly in various pathologies, but the mechanism underlying the control of Paneth cell function remains largely unknown. Here, we identified microRNA-195 (miR-195) as a repressor of Paneth cell development and activity by altering SOX9 translation via interaction with RNA-binding protein HuR. Tissue-specific transgenic expression of miR-195 (miR195-Tg) in the intestinal epithelium decreased the levels of mucosal SOX9 and reduced the numbers of lysozyme-positive (Paneth) cells in mice. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restored Paneth cell development ex vivo. miR-195 did not bind to Sox9 mRNA but it directly interacted with HuR and prevented HuR binding to Sox9 mRNA, thus inhibiting SOX9 translation. Intestinal mucosa from mice that harbored both Sox9 transgene and ablation of the HuR locus exhibited lower levels of SOX9 protein and Paneth cell numbers than those observed in miR-195-Tg mice. Inhibition of miR-195 activity by its specific antagomir improved Paneth cell function in HuR-deficient intestinal organoids. These results indicate that interaction of miR-195 with HuR regulates Paneth cell function by altering SOX9 translation in the small intestinal epithelium.NEW & NOTEWORTHY Our results indicate that intestinal epithelial tissue-specific transgenic miR-195 expression decreases the levels of SOX9 expression, along with reduced numbers of Paneth cells. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restores Paneth cell development ex vivo. miR-195 inhibits SOX9 translation by preventing binding of HuR to Sox9 mRNA. These findings suggest that interaction between miR-195 and HuR controls Paneth cell function via SOX9 in the intestinal epithelium.


Asunto(s)
Proteína 1 Similar a ELAV , Mucosa Intestinal , MicroARNs , Células de Paneth , Factor de Transcripción SOX9 , Animales , MicroARNs/genética , MicroARNs/metabolismo , Células de Paneth/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Mucosa Intestinal/metabolismo , Ratones , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Ratones Transgénicos , Humanos , Organoides/metabolismo , Biosíntesis de Proteínas , Ratones Endogámicos C57BL
3.
Huan Jing Ke Xue ; 45(7): 4052-4062, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022953

RESUMEN

Microplastics are among the most difficult new pollutants to remove in wastewater treatment plants. In order to explore the occurrence form, size distribution, composition, removal efficiency, migration law, and fate behavior characteristics of microplastic particles in sewage plants, taking a sewage treatment plant in Hohhot as an example, a total of 17 sampling sites were set up. The LAS X software counted the shape, abundance, and size of microplastics and conducted a full-process analysis. The results showed that: fibrous microplastics had the highest abundance and widest distribution and were the main form of existence, accounting for 61.8% of the total abundance; the size of microplastics ranged mainly between 0 and 1.00 mm, and among the four sizes, the abundance of microplastics 0.25 to 0.50 mm in China was the highest, accounting for 32.9%. Among the eight types of plastic components detected, polyester substances (PET, PBT), cellulose, and polypropylene (PP) were the main components, accounting for 25%, 21%, and 17%, respectively. The influent abundance of the sewage plant was (73 ±5) n·L-1, the effluent abundance was (14 ±2) n·L-1, and the overall removal rate was (80.8 ±12.1)%. Among the three treatment stages of the sewage plant, only the primary treatment played a role in removal, and the abundance of microplastics surged in the secondary treatment. Different structures playing a major role in the removal of microplastics were fine grids (49.2 ±7.4)% and secondary sedimentation tanks (92.4 ±13.9)%. Microplastics mainly existed in the form of fibers, fragments, and films. The proportion of fibers was approximately 70%, and the size of fragments was mainly concentrated between 0.50 and 5.00 mm. Most fragments were in the range of 5.00 mm, accounting for 50%, making them the main form apart from fibrous. The film-like size was mostly concentrated in the range of less than 0.50 mm, accounting for more than 10%. Therefore, improving the removal of small-sized fibrous and film-like microplastics and large-sized fragmented microplastic particles can effectively reduce the pollution risk of microplastics in the environment caused by sewage plant drainage.


Asunto(s)
Ciudades , Microplásticos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Microplásticos/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , China , Aguas del Alcantarillado/química , Plásticos , Tamaño de la Partícula , Polipropilenos , Monitoreo del Ambiente
4.
Huan Jing Ke Xue ; 44(12): 6754-6766, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098401

RESUMEN

To deeply understand the hydrological cycle process and the transformation mechanism of different water bodies in the grassland inland river basin, the atmospheric precipitation, river water, and groundwater in the Xilin River Basin were taken as the research objects, the hydrogen and oxygen stable isotopes were analyzed, and the multi-scale spatio-temporal characteristics were analyzed to explore the quantitative transformation relationship between different water bodies in the basin. The results showed that:① the Xilin River Basin had an obvious inland semi-arid climate, the atmospheric precipitation was the main source of recharge for the river water and groundwater, and the groundwater and river water experienced different degrees of non-equilibrium evaporation at the same time. ② The isotopic composition of the river water showed the characteristics of depletion in spring and autumn and enrichment in summer and showed a trend of increasing from upstream to downstream in space. The variation in δ18O in shallow and deep groundwater during the growing season was basically the same, and the main difference between the two occurred at the end of the growing season, that is, the former tended to be stable, whereas the latter showed an upward trend, which reflected that the deep groundwater had a lagged response to the infiltration and recharge of atmospheric precipitation and surface water, and both of them were depleted gradually from southeast to northwest in space. ③ Based on the estimation results of the endmember mixing model, the average recharge ratio of atmospheric precipitation and shallow groundwater to river water in summer was 52.69% and 47.31%, respectively, indicating that shallow groundwater was an important recharge source of river water in the inland river basin even during the rainy season. The results of this study provide theoretical guidance for water resource regulation and ecological environment protection in a typical semi-arid grassland inland river basin.

5.
Huan Jing Ke Xue ; 44(12): 6767-6777, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098402

RESUMEN

Taking the Tugeligaole sub-basin of the Jilantai Salt Lake Basin in Inner Mongolia as the typical study area, the groundwater samples of 22 points were collected, and their main characteristic indexes were tested during the wet season and the dry season separately in 2021. Mathematical statistics, Piper triangular diagrams, a Gibbs plot, ionic relations, and factor analysis were used to analyze and discuss the hydrochemical characteristics and formation mechanism of groundwater in different periods. Based on the evaluation of the groundwater quality using the water quality index(WQI) method, the potential risks of groundwater Cr6+ and F- were evaluated using the health risk evaluation model. The results showed that the groundwater was overall weakly alkaline; the dominant anions and cations during the different periods were Cl- and Na+, and the water chemistry type was mainly Cl--Na+; the groundwater quality was generally good, and the difference in water quality between the wet season and the dry season was not significant; adults and children had higher carcinogenic health risks in the dry season than that in the wet season, and the health risks of children were significantly higher than those in adults. The maximum carcinogenic health risk of drinking water exposure to Cr6+ in adults and children was higher than the maximum acceptable risk level(5×10-5). The chemical evolution of groundwater was mainly affected by evaporative concentration, evaporative salt rock dissolution, and cation exchange, and the main control factors were evaporative concentration(contribution rate of 54.19%), native geological environment factors(contribution rate of 12.99%), and carbonate rock dissolution(contribution rate of 11.66%). The study results have significance to some degree to the sustainable exploitation and utilization of groundwater resources and environmental protection of the salt lake basin.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Niño , Adulto , Humanos , Monitoreo del Ambiente , Lagos , Calidad del Agua , Carbonatos , China , Contaminantes Químicos del Agua/análisis
6.
Huan Jing Ke Xue ; 44(10): 5344-5355, 2023 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-37827753

RESUMEN

To assess the health risk status and pollution sources of heavy metals in the atmosphere of ecologically vulnerable areas, the surrounding area of Dahekou Reservoir in Xilingol League was selected as the study area. From 2021 to 2022, 12 monitoring points for atmospheric dust fall were collected for a period of one year. A total of 144 samples were collected to determine the contents of eight types of heavy metals, namely Cr, Ni, Pb, Cu, Zn, Mn, As, and Cd. The potential ecological index (Eri) and health risk assessment model were used to assess the risk level of atmospheric heavy metals on ecological security and human health. The analysis of enrichment factors, principal components, and the model of absolute principal component multiple linear regression (APCS-MLR) receptor were used to analyze the sources of heavy metal pollution qualitatively in the atmosphere of the study area. The results showed that:① the mean value of the comprehensive potential ecological risk of heavy metals in the annual atmospheric dust fall in the study area was at a high ecological risk, and only the Cd value was at a very high risk level among the heavy metals, whereas the remaining were at a slight risk. ② The results of the health risk showed that intake by hand, mouth, and skin contact were the main exposure routes, which led to non-carcinogenic and carcinogenic risks. Children were under non-carcinogenic and acceptable carcinogenic risks in different months. During those months, the main source of the risks was As. ③ Through enrichment factor analysis, principal component analysis, and APCS-MLR receptor model calculation, the results revealed that the proportion of wind-blown sources was the largest, accounting for 37.82%, and the contribution rates of coal combustion and traffic sources to Cu, Cd, Pb, and Zn were 73.01%, 40.22%, 70.31%, and 32.82%, respectively. The contribution rate of mining activities to As was 42.59%, while that of industrial sources of Cd was 22.01%; the contributions of other human activity sources of Cd, As, Pb, and Zn were 21.12%, 34.40%, 23.04%, and 32.15%, respectively.


Asunto(s)
Polvo , Metales Pesados , Niño , Humanos , Polvo/análisis , Monitoreo del Ambiente , Modelos Lineales , Cadmio/análisis , Plomo/análisis , Metales Pesados/análisis , Medición de Riesgo , China
7.
Huan Jing Ke Xue ; 44(9): 4863-4873, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699805

RESUMEN

The Yellow River in Inner Mongolia was selected as the study area in this study. In July (wet season) and October (dry season) of 2021, the acquisition of seasonal rivers, the Yellow River tributaries and precipitation, the Yellow River, Wuliangsuhai, Lake Hasuhai, Lake Daihai, an irrigation canal system, and underground water and sea water samples were collected to test the water chemical composition and hydrogen and oxygen isotopic values of different water types. Using the Piper triplot, Gibbs plot, ion ratio, and MixSIAR model methods, the evolution of water chemistry in the Mongolian section of the Yellow River Basin was analyzed, and the transformation relationship between precipitation, surface water, and groundwater was revealed. The results showed that both groundwater and surface water in the study area were slightly alkaline; the dominant anion in water was Cl-, and the dominant cation was Na+. The main hydrochemical types of surface water were Cl·SO4-Na·Mg and SO4·HCO3-Na·Mg, whereas those of groundwater were Cl·SO4-Na·Mg and SO4·HCO3-Na·Ca. Groundwater Ca2+ and Mg2+ were primarily derived from the dissolution of silicate and evaporite, and surface water Ca2+ and Mg2+ were primarily derived from carbonate karst dissolution and carbonate and sulfuric acid in water participating in the dissolution process of carbonate and sulfide minerals. Na+ and Cl- in different water bodies were all affected by anthropogenic pollution sources. Owing to the seasonal effect, δD and δ18O of surface water and groundwater were higher in the wet season than in the dry season. The results showed that surface water was affected by evaporative fractionation after receiving precipitation recharge, and the groundwater recharge sources were complex. The MixSIAR model revealed that surface water was the main recharge source of groundwater, accounting for 52.4%-62.2% of the total recharge, and atmospheric precipitation was the main recharge source of surface water, accounting for 85.4%-97.1% of the total recharge.

8.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2215-2225, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37681386

RESUMEN

The natural and geographical environment of ecologically fragile areas in northern China is complex. Due to heavy human disturbance and impacts of climate change, the sustainable development of ecosystems is facing serious challenges. Constructing ecological security pattern can provide decision-making basis for ecological environment protection in desertification areas. Based on land use change data of Horqin dune-meadow interphase area from 1985 to 2021, we identified ecological sources with the importance of ecosystem services and ecological sensitivity, and constructed the ecological security pattern using the minimum cumulative resistance model. We further analyzed the ecological security pattern and its development trend in 1985, 1995, 2005, 2015 and 2021, and explored the ecological spatial layout adjustment strategy. The results showed that the proportion of source area in the ecological security pattern of the study area was always small and scattered from 1985 to 2021, the network of ecological corridors was low, and the connectivity between ecological patches was lacking. The ecological security pattern had experienced a trend of deterioration first and then gradually improving. Ecological policies such as returning farmland to forest and grassland and afforestation had significantly improved the environmental security. We optimized the study area by combining the cultivated land suitability evaluation method. The ecological security pattern showed a spatial trend of 'dual-core, scattered and semi-surrounded'. The results could provide references for the construction of county-scale ecological security pattern in ecologically fragile areas and the ecological management of Horqin sands.


Asunto(s)
Ecosistema , Arena , Humanos , Pradera , Bosques , China
9.
EMBO Rep ; 24(2): e54925, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36440604

RESUMEN

Vault RNAs (vtRNAs) are small noncoding RNAs and highly expressed in many eukaryotes. Here, we identified vtRNA2-1 as a novel regulator of the intestinal barrier via interaction with RNA-binding protein HuR. Intestinal mucosal tissues from patients with inflammatory bowel diseases and from mice with colitis or sepsis express increased levels of vtRNAs relative to controls. Ectopically expressed vtRNA2-1 decreases the levels of intercellular junction (IJ) proteins claudin 1, occludin, and E-cadherin and causes intestinal epithelial barrier dysfunction in vitro, whereas vtRNA2-1 silencing promotes barrier function. Increased vtRNA2-1 also decreases IJs in intestinal organoid, inhibits epithelial renewal, and causes Paneth cell defects ex vivo. Elevating the levels of tissue vtRNA2-1 in the intestinal mucosa increases the vulnerability of the gut barrier to septic stress in mice. vtRNA2-1 interacts with HuR and prevents HuR binding to claudin 1 and occludin mRNAs, thus decreasing their translation. These results indicate that vtRNA2-1 impairs intestinal barrier function by repressing HuR-facilitated translation of claudin 1 and occludin.


Asunto(s)
Colitis , MicroARNs , Células de Paneth , Animales , Ratones , Claudina-1/genética , Claudina-1/metabolismo , Colitis/genética , Colitis/metabolismo , Mucosa Intestinal/metabolismo , Ocludina/metabolismo , MicroARNs/metabolismo
10.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214222

RESUMEN

Intestinal epithelial integrity is commonly disrupted in patients with critical disorders, but the exact underlying mechanisms are unclear. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control different cell functions and are involved in pathologies. Here, we investigated the role of T-UCRs in intestinal epithelial homeostasis and identified T-UCR uc.230 as a major regulator of epithelial renewal, apoptosis, and barrier function. Compared with controls, intestinal mucosal tissues from patients with ulcerative colitis and from mice with colitis or fasted for 48 hours had increased levels of uc.230. Silencing uc.230 inhibited the growth of intestinal epithelial cells (IECs) and organoids and caused epithelial barrier dysfunction. Silencing uc.230 also increased IEC vulnerability to apoptosis, whereas increasing uc.230 levels protected IECs against cell death. In mice with colitis, reduced uc.230 levels enhanced mucosal inflammatory injury and delayed recovery. Mechanistic studies revealed that uc.230 increased CUG-binding protein 1 (CUGBP1) by acting as a natural decoy RNA for miR-503, which interacts with Cugbp1 mRNA and represses its translation. These findings indicate that uc.230 sustains intestinal mucosal homeostasis by promoting epithelial renewal and barrier function and that it protects IECs against apoptosis by serving as a natural sponge for miR-503, thereby preserving CUGBP1 expression.


Asunto(s)
Proteínas CELF1 , Colitis , Homeostasis , Mucosa Intestinal , ARN Largo no Codificante , Cicatrización de Heridas , Animales , Apoptosis , Proteínas CELF1/genética , Proteínas CELF1/inmunología , Colitis/genética , Colitis/inmunología , Homeostasis/genética , Homeostasis/inmunología , Mucosa Intestinal/inmunología , Ratones , MicroARNs/genética , MicroARNs/inmunología , ARN Largo no Codificante/genética , ARN Largo no Codificante/inmunología , ARN Mensajero/genética , ARN Mensajero/inmunología , Cicatrización de Heridas/genética , Cicatrización de Heridas/inmunología , Heridas y Lesiones/genética , Heridas y Lesiones/inmunología
11.
Environ Res ; 213: 113747, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753379

RESUMEN

Predicting the groundwater level of karst aquifers in North China Coalfield is essential for early warning of mine water hazards and regional water resources management. However, the dynamic changes of strata structure and hydrogeological parameters driven by coal mining activity cause challenges to the process-oriented groundwater model. In order to achieve accurate prediction of groundwater level in large mining areas, this study was the first to use the data-driven Nonlinear Autoregressive with External Input (NARX) model to predict the groundwater level of six karst aquifer observation wells in Pingshuo Mining Area. Three variable input scenarios were set up, solely considering meteorological factors, anthropogenic disturbance factors, and considering both meteorological and anthropogenic disturbance factors. The novel partial mutual information (PMI) screening algorithm was adopted to determine optimized input variables in each scenario. The input and feedback delay coefficients of NARX model were determined by using Seasonal-trend Decomposition Procedure Based on Loess (STL) algorithm and auto- and cross-correlation functions. The results showed that PMI algorithm can effectively screen out the optimal input variables for predicting groundwater level, the NSE coefficients of the PMI-NARX models under the three scenarios were 38.81%, 4.26% and 41.46% higher than those of the corresponding control experiments, respectively. In addition, the prediction performance of the PMI-NARX built on the basis of meteorological factors is poor (NSE <0.63). However, in scenarios which solely use anthropogenic disturbance factors and both use meteorological and anthropogenic disturbance factors, the PMI-NARX coupling models exhibit good prediction performance (NSE and R2 are all greater than 0.8). Especially under solely considering anthropogenic disturbance factors scenario, the model still exhibited good prediction accuracy with a negligible number of input variables. The results can provide technical and theoretical support for the prediction of groundwater level in other mining areas.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Monitoreo del Ambiente/métodos , Predicción , Agua Subterránea/química , Minería , Recursos Hídricos
12.
Ying Yong Sheng Tai Xue Bao ; 33(6): 1572-1580, 2022 Jun.
Artículo en Chino | MEDLINE | ID: mdl-35729135

RESUMEN

Exploring the temporal and spatial variations of precipitation and drought is an important topic in hydro-logy. Based on the precipitation data of 619 meteorological stations in China from 1951 to 2018, we used anomaly percentage method and Morlet wavelet analysis to analyze the temporal and spatial variations of annual precipitation and drought. The results showed that annual precipitation in China showed a stepwise decreasing trend from southeast to northwest during the study period, and that the intensity of annual precipitation change was on the contrary. The precipitation near the boundary of the second and third steps showed a downward trend, and the abrupt change of precipitation occurred mainly in the 1960s and 1970s. The rest region was on the rise, with substantial changes in the 1990s. The main period of precipitation was short in the regions with temperate continental climate and temperate monsoon climate. From 1960s to 2010s, the area of arid land in China had decreased, while that of the semi-arid area and semi-humid area had increased gradually, especially in the recent decade. An aridity boundary was found between 30° N and 40° N, with drought frequency in its north being much more than the south. On the whole, the frequency and scope of drought events showed a decreasing trend and its interdecadal shift direction was from the central part of northwest China to the southern part of North China and then to the northern part of North China.


Asunto(s)
Cambio Climático , Sequías , China , Meteorología , Estaciones del Año
13.
International Eye Science ; (12): 1608-1614, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-942826

RESUMEN

AIM: To investigate the effect of lncRNA MALAT1 on the proliferation, migration and angiogenesis of retinal vascular endothelial cells and its molecular mechanism.METHODS: The expression levels of lncRNA MALAT1 in plasma of normal control group, diabetic without retinopathy group and diabetic retinopathy group were detected by qPCR and the effect of glucose culture on the expression levels of lncRNA MALAT1 were detected by qPCR too. The expression level of miR-124-3p was detected by qRT-PCR; Western blotting was used to detect the expression level of SOX7; The targeting relationship between lncRNA MALAT1 and miR-124-3p, miR-124-3p and SOX7 were detected by the dual-luciferase reporter system; CCK-8 assay was used to detect cell proliferation activity; Transwell assay was used to detect the migration ability of cells; Angiogenesis of hRMECs cells was measured by in vitro tube formation assay.RESULTS:The expression level of lncRNA MALAT1 in plasma of diabetic retinopathy patients was significantly higher than that of diabetic without retinopathy group and normal control group(P&#x003C;0.001). In vitro glucose culture significantly promoted the expression of lncRNA MALAT1 in hRMECs cells, as well as the proliferation, migration and angiogenesis of hRMECs cells(all P&#x003C;0.05). Knockdown of lncRNA MALAT1 significantly inhibited the proliferation, migration and tubule formation of hRMECs cells(all P&#x003C;0.05). Dual-luciferase reporter gene assay showed that lncRNA MALAT1 targeted with miR-124-3p, and miR-124-3p targeted with SOX7. Overexpression of miR-124-3p significantly inhibited the proliferation, migration and tubule formation of hRMECs cells(all P&#x003C;0.05). Overexpression of lncRNA MALAT1+miR-124-3p, miR-124-3p+SOX7, and knockdown of lncRNA MALAT1+overexpression of SOX7 all significantly eliminated the inhibitory effect of hRMECs cells(all P&#x003C;0.05).CONCLUSION: lncRNA MALAT1 promote the proliferation, migration and angiogenesis of retinal endothelial cells in diabetic retinopathy by down-regulating the negative regulation of miR-124-3p on SOX7. Therefore, abnormal upregulation of lncRNA MALAT1 in patients with diabetic retinopathy is a potential biomarker.

14.
Cell Discov ; 7(1): 98, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34697290

RESUMEN

The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNAThr, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.

15.
Gastroenterology ; 161(4): 1303-1317.e3, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34116030

RESUMEN

BACKGROUND & AIMS: Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that form covalently closed circles. Although circRNAs influence many biological processes, little is known about their role in intestinal epithelium homeostasis. We surveyed circRNAs required to maintain intestinal epithelial integrity and identified circular homeodomain-interacting protein kinase 3 (circHIPK3) as a major regulator of intestinal epithelial repair after acute injury. METHODS: Intestinal mucosal tissues were collected from mice exposed to cecal ligation and puncture for 48 hours and patients with inflammatory bowel diseases and sepsis. We isolated primary enterocytes from the small intestine of mice and derived intestinal organoids. The levels of circHIPK3 were silenced in intestinal epithelial cells (IECs) by transfection with small interfering RNAs targeting the circularization junction of circHIPK3 or elevated using a plasmid vector that overexpressed circHIPK3. Intestinal epithelial repair was examined in an in vitro injury model by removing part of the monolayer. The association of circHIPK3 with microRNA 29b (miR-29b) was determined by biotinylated RNA pull-down assays. RESULTS: Genome-wide profile analyses identified ∼300 circRNAs, including circHIPK3, differentially expressed in the intestinal mucosa of mice after cecal ligation and puncture relative to sham mice. Intestinal mucosa from patients with inflammatory bowel diseases and sepsis had reduced levels of circHIPK3. Increasing the levels of circHIPK3 enhanced intestinal epithelium repair after wounding, whereas circHIPK3 silencing repressed epithelial recovery. CircHIPK3 silencing also inhibited growth of IECs and intestinal organoids, and circHIPK3 overexpression promoted intestinal epithelium renewal in mice. Mechanistic studies revealed that circHIPK3 directly bound to miR-29b and inhibited miR-29 activity, thus increasing expression of Rac1, Cdc42, and cyclin B1 in IECs after wounding. CONCLUSIONS: In studies of mice, IECs, and human tissues, our results indicate that circHIPK3 improves repair of the intestinal epithelium at least in part by reducing miR-29b availability.


Asunto(s)
Movimiento Celular , Proliferación Celular , Células Epiteliales/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , MicroARNs/metabolismo , ARN Circular/metabolismo , Sepsis/metabolismo , Animales , Células Cultivadas , Ciclina B1/genética , Ciclina B1/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Epiteliales/patología , Femenino , Homeostasis , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , ARN Circular/genética , Sepsis/genética , Sepsis/patología , Cicatrización de Heridas , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
16.
Am J Physiol Cell Physiol ; 320(6): C1042-C1054, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33788631

RESUMEN

Intestinal Tuft cells sense luminal contents to influence the mucosal immune response against eukaryotic infection. Paneth cells secrete antimicrobial proteins as part of the mucosal protective barrier. Defects in Tuft and Paneth cells occur commonly in various gut mucosal disorders. MicroRNA-195 (miR-195) regulates the stability and translation of target mRNAs and is involved in many aspects of cell processes and pathologies. Here, we reported the posttranscriptional mechanisms by which miR-195 regulates Tuft and Paneth cell function in the small intestinal epithelium. Mucosal tissues from intestinal epithelial tissue-specific miR-195 transgenic (miR195-Tg) mice had reduced numbers of double cortin-like kinase 1 (DCLK1)-positive (Tuft) and lysozyme-positive (Paneth) cells, compared with tissues from control mice, but there were no effects on Goblet cells and enterocytes. Intestinal organoids expressing higher miR-195 levels from miR195-Tg mice also exhibited fewer Tuft and Paneth cells. Transgenic expression of miR-195 in mice failed to alter growth of the small intestinal mucosa but increased vulnerability of the gut barrier in response to lipopolysaccharide (LPS). Studies aimed at investigating the mechanism underlying regulation of Tuft cells revealed that miR-195 directly interacted with the Dclk1 mRNA via its 3'-untranslated region and inhibited DCLK1 translation. Interestingly, the RNA-binding protein HuR competed with miR-195 for binding Dclk1 mRNA and increased DCLK1 expression. These results indicate that miR-195 suppresses the function of Tuft and Paneth cells in the small intestinal epithelium and further demonstrate that increased miR-195 disrupts Tuft cell function by inhibiting DCLK1 translation via interaction with HuR.


Asunto(s)
Mucosa Intestinal/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células CACO-2 , Línea Celular , Línea Celular Tumoral , Quinasas Similares a Doblecortina , Enterocitos/metabolismo , Femenino , Células Caliciformes/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Organoides/metabolismo
17.
Ying Yong Sheng Tai Xue Bao ; 32(3): 860-868, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33754551

RESUMEN

Inner Mongolian steppe is one of the ecological barriers in China. The variation of water resources is very important for the development of social-economy and the protection of eco-environment. We collected 254 water samples of precipitation, river, and shadow groundwater during wet-season and dry-season of 2018-2019 from Balaguer River watershed and meansured the physical-chemical indicators, δD and δ18O of water samples. The stable isotope technology, mathematical statistics, and the inverse distance weighting method were used to analyze the stable isotope composition, spatial-temporal variation, and impact factors. Moreover, the d-excess and the isotopic mixing ratio formula were used to analyze the conversion characteristics of different water and to identify their environment driving variables. The results showed that δD and δ18O of precipitation, river and shallow groundwater were higher in wet season than in dry season. The driving factors of different water transformation in the watershed were air temperature, altitude, and groundwater depth. Altitude was significantly negatively correlated with river δD, and the δD and δ18O of groundwater. δD and δ18O of groundwater fluctuated significantly in the area with groundwater depth less than 10 m, but were stable in other areas. There was a positive correlation between precipitation δ18O and air temperature. The d-excess in wet season was higher than that in dry season, with a decreasing distribution characteristic from southern to northern part in the study area. More than 50% river in upper stream came from precipitation, while more than half river water converted to groundwater, with different recharge-drainage relationships existed between surface water and groundwater in different river reaches.


Asunto(s)
Agua Subterránea , Ríos , China , Monitoreo del Ambiente , Isótopos de Oxígeno/análisis , Agua
18.
Cell Mol Gastroenterol Hepatol ; 9(4): 611-625, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31862317

RESUMEN

BACKGROUND & AIMS: The protective intestinal mucosal barrier consists of multiple elements including mucus and epithelial layers and immune defense; nonetheless, barrier dysfunction is common in various disorders. The imprinted and developmentally regulated long noncoding RNA H19 is involved in many cell processes and diseases. Here, we investigated the role of H19 in regulating Paneth and goblet cells and autophagy, and its impact on intestinal barrier dysfunction induced by septic stress. METHODS: Studies were conducted in H19-deficient (H19-/-) mice, mucosal tissues from patients with sepsis, primary enterocytes, and Caco-2 cells. Septic stress was induced by cecal ligation and puncture (CLP), and gut permeability was detected by tracer fluorescein isothiocyanate-dextran assays. The function of Paneth and goblet cells was examined by immunostaining for lysozyme and mucin 2, respectively, and autophagy was examined by microtubule-associated proteins 1A/1B light chain 3 II immunostaining and Western blot analysis. Intestinal organoids were isolated from H19-/- and control littermate mice and treated with lipopolysaccharide (LPS). RESULTS: Intestinal mucosal tissues in mice 24 hours after exposure to CLP and in patients with sepsis showed high H19 levels, associated with intestinal barrier dysfunction. Targeted deletion of the H19 gene in mice enhanced the function of Paneth and goblet cells and promoted autophagy in the small intestinal mucosa. Knockout of H19 protected Paneth and goblet cells against septic stress, preserved autophagy activation, and promoted gut barrier function after exposure to CLP. Compared with organoids from control littermate mice, intestinal organoids isolated from H19-/- mice had increased numbers of lysozyme- and mucin 2-positive cells and showed increased tolerance to LPS. Conversely, ectopic overexpression of H19 in cultured intestinal epithelial cells prevented rapamycin-induced autophagy and abolished the rapamycin-induced protection of the epithelial barrier against LPS. CONCLUSIONS: In investigations of mice, human tissues, primary organoids, and intestinal epithelial cells, we found that increased H19 inhibited the function of Paneth and goblet cells and suppressed autophagy, thus potentially contributing to barrier dysfunction in intestinal pathologies.


Asunto(s)
Autofagia/genética , Células Caliciformes/patología , Células de Paneth/patología , ARN Largo no Codificante/metabolismo , Sepsis/patología , Animales , Autofagia/inmunología , Células CACO-2 , Modelos Animales de Enfermedad , Femenino , Células Caliciformes/inmunología , Humanos , Intestino Delgado/citología , Intestino Delgado/inmunología , Intestino Delgado/patología , Masculino , Ratones , Ratones Noqueados , Organoides , Células de Paneth/inmunología , Permeabilidad , ARN Largo no Codificante/genética , Sepsis/inmunología
19.
Ying Yong Sheng Tai Xue Bao ; 31(6): 1989-1998, 2020 Jun.
Artículo en Chino | MEDLINE | ID: mdl-34494753

RESUMEN

Terrestrial carbon cycle plays a key role in driving climate change and ecosystem carbon balance. Understanding the variations of humidity and temperature and CO2 exchanges are meaningful to reveal the law and mechanism of regional carbon cycles in deserts. We examined the near surface humidity, temperature variations, and CO2 exchanges by eddy covariance and Bowen ratio systems in a typical mobile dune of Horqin sandy land. We analyzed the relationships between water-heat and CO2 exchanges of 0 to 10 m vertical height at daily and seasonal scales were analyzed. The results showed that the vertical variations of near surface temperature ranged from 0.4 ℃ to 2 ℃ and decreased with the increases of height from April to September, but with an opposite pattern in other months. The seasonal variation of air relative humidity was greater than 40%. During the growing season of 2018, the averaged daily net ecosystem carbon exchange (NEE) was -0.02 mg·m-2·s-1. The annual averaged daily NEE was 0.003 mg·m-2·s-1, indicating that the mobile dunes were carbon sources at the whole year scale. The vertical differences of temperature and humidity well fitted the NEE. The inflexion points of the fitting curve were at 10% humidity and 0.5 ℃ temperature, respectively. At the scalem of the year, the NEE fitting result of temperature was better than that of humidity, with the inflexion points at 17 ℃ and 65% humidity, respectively. In the growing season, the near surface vertical temperature difference was negative, which would inhibit CO2 absorption of mobile dunes. The circumstances of high humidity would promote the absorption of atmospheric CO2. Across different time and vertical height, the variations of humidity and temperature were closely related to CO2 exchanges, which affected carbon sink and source of mobile dunes. Carbon budget was more sensitive to temperature than humidity.


Asunto(s)
Dióxido de Carbono , Ecosistema , Ciclo del Carbono , Dióxido de Carbono/análisis , China , Humedad , Arena , Estaciones del Año , Temperatura
20.
Ying Yong Sheng Tai Xue Bao ; 31(8): 2710-2720, 2020 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34494794

RESUMEN

As the main source of soil moisture supply in desertified areas, rainfall has a profound impact on soil moisture changes and plays an important role in deep soil moisture replenishment. Based on the Hydrus-1D model with optimized parameters, we analyzed the dynamic change process of the leakage in the 200 cm deep layer of the semi-mobile dunes in Horqin Sandy Land and its response to the rainfall patterns. The results showed that the averaged leakage replenishment of semi-mobile dunes was 254.31 mm from April to October each year during 2016 to 2019, accoun-ting for 61.8% of the rainfall in the same period. Deep leakage mainly occurred from June to August, accounting for 72.8% of the total. The leakage rate was distributed between 0.03-2.70 mm·h-1, with the maximum leakage rate occurring under heavy rainfall and frequent rainfall events. The deep soil water supplied by rainfall infiltration was affected by the amount of rainfall, rainfall intensity, duration of precipitation and soil moisture content in the earlier period. Precipitation events with long duration and small rainfall intensity were more conducive to deep water lea-kage, with a significant positive correlation between the leakage and rainfall (R2=0.85). 16-18 mm rainfall was the threshold for the leakage of 200 cm soil depth. The high-frequency rainfall event usually reached peak after 17-38 hours, with the entire leakage process being more than 164 hours. Accurate estimation of deep leakage has theoretical and practical significance for water resource assessment and ecological construction in desertified areas.


Asunto(s)
Lluvia , Agua , China , Clima Desértico , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA