Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38674868

RESUMEN

Vitamin A deficiency (VAD) induced TGF-ß hyperactivation and reduced expression of cell adhesion proteins in the lung, suggesting that the disruption of retinoic acid (RA) signaling leads to epithelial-mesenchymal transition (EMT). To elucidate the role of lung vitamin A status in EMT, several EMT markers and the expression of the proprotein convertase furin, which activates TGF-ß, were analyzed in two experimental models. Our in vivo model included control rats, VAD rats, and both control rats and VAD rats, treated with RA. For the in vitro studies, human bronchoalveolar epithelial cells treated with RA were used. Our data show that EMT and furin are induced in VAD rats. Furthermore, furin expression continues to increase much more markedly after treatment of VAD rats with RA. In control rats and cell lines, an acute RA treatment induced a significant increase in furin expression, concomitant with changes in EMT markers. A ChIP assay demonstrated that RA directly regulates furin transcription. These results emphasize the importance of maintaining vitamin A levels within the physiological range since both levels below and above this range can cause adverse effects that, paradoxically, could be similar. The role of furin in EMT is discussed.


Asunto(s)
Transición Epitelial-Mesenquimal , Furina , Pulmón , Deficiencia de Vitamina A , Vitamina A , Furina/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Animales , Humanos , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Vitamina A/farmacología , Vitamina A/metabolismo , Ratas , Deficiencia de Vitamina A/metabolismo , Masculino , Tretinoina/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular , Ratas Wistar
2.
Nutrients ; 10(9)2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134568

RESUMEN

Vitamin A (all-trans-retinol) is a fat-soluble micronutrient which together with its natural derivatives and synthetic analogues constitutes the group of retinoids. They are involved in a wide range of physiological processes such as embryonic development, vision, immunity and cellular differentiation and proliferation. Retinoic acid (RA) is the main active form of vitamin A and multiple genes respond to RA signalling through transcriptional and non-transcriptional mechanisms. Vitamin A deficiency (VAD) is a remarkable public health problem. An adequate vitamin A intake is required in early lung development, alveolar formation, tissue maintenance and regeneration. In fact, chronic VAD has been associated with histopathological changes in the pulmonary epithelial lining that disrupt the normal lung physiology predisposing to severe tissue dysfunction and respiratory diseases. In addition, there are important alterations of the structure and composition of extracellular matrix with thickening of the alveolar basement membrane and ectopic deposition of collagen I. In this review, we show our recent findings on the modification of cell-junction proteins in VAD lungs, summarize up-to-date information related to the effects of chronic VAD in the impairment of lung physiology and pulmonary disease which represent a major global health problem and provide an overview of possible pathways involved.


Asunto(s)
Enfermedades Pulmonares/metabolismo , Pulmón/metabolismo , Deficiencia de Vitamina A/metabolismo , Vitamina A/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Transición Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Humanos , Pulmón/patología , Pulmón/fisiopatología , Enfermedades Pulmonares/epidemiología , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/fisiopatología , Factores de Riesgo , Transducción de Señal , Deficiencia de Vitamina A/epidemiología , Deficiencia de Vitamina A/patología , Deficiencia de Vitamina A/fisiopatología
3.
Nutrients ; 6(11): 4984-5017, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25389900

RESUMEN

Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.


Asunto(s)
Matriz Extracelular/patología , Deficiencia de Vitamina A/fisiopatología , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Vitamina A/administración & dosificación
4.
Neurotox Res ; 24(4): 532-48, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23820986

RESUMEN

Dendritic spines are specialised membrane protrusions of neuronal dendrites that receive the majority of excitatory synaptic inputs. Abnormal changes in their density, size and morphology have been associated with various neurological and psychiatric disorders, including those deriving from drug addiction. Dendritic spine formation, morphology and synaptic functions are governed by the actin cytoskeleton. Previous in vivo studies have shown that ethanol alters the number and morphology of spines, although the mechanisms underlying these alterations remain unknown. It has also been described how chronic ethanol exposure affects the levels, assembly and cellular organisation of the actin cytoskeleton in hippocampal neurons in primary culture. Therefore, we hypothesised that the ethanol-induced alterations in the number and shape of dendritic spines are due to alterations in the mechanisms regulating actin cytoskeleton integrity. The results presented herein show that chronic exposure to moderate levels of alcohol (30 mM) during the first 2 weeks of culture reduces dendritic spine density and alters the proportion of the different morphologies of these structures in hippocampal neurons, which affects the formation of mature spines. Apparently, these effects are associated with an increase in the G-actin/F-actin ratio due to a reduction of the F-actin fraction, leading to changes in the levels of the different factors regulating the organisation of this cytoskeletal component. The data presented herein indicate that these effects occur between weeks 1 and 2 of culture, an important period in dendritic spines development. These changes may be related to the dysfunction in the memory and learning processes present in children prenatally exposed to ethanol.


Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/ultraestructura , Etanol/toxicidad , Acetilcolinesterasa/metabolismo , Actinas/metabolismo , Animales , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Wistar , Receptores Ionotrópicos de Glutamato/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
5.
J Nutr Biochem ; 24(1): 137-45, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22832075

RESUMEN

Vitamin A is essential for lung development and pulmonary cell differentiation. Its deficiency leads to altered lung structure and function and to basement membrane architecture and composition disturbances. Previously, we showed that lack of retinoids thickens the alveolar basement membrane and increases collagen IV, which are reversed by retinoic acid, the main biologically active vitamin A form. This study analyzed how vitamin A deficiency affects the subunit composition of collagen IV and laminin of lung basement membranes and pulmonary matrix metalloproteinase content, plus the recovering effect of all-trans-retinoic acid. Male weanling pups were fed a retinol-adequate/-deficient diet until 60 days old. A subgroup of vitamin-A-deficient pups received daily intraperitoneal all-trans-retinoic acid injections for 10 days. Collagen IV and laminin chain composition were modified in vitamin-A-deficient rats. The protein and mRNA contents of chains α1(IV), α3(IV) and α4(IV) increased; those of chains α2(IV) and α5(IV) remained unchanged; and the protein and mRNA contents of laminin chains α5, ß1 and γ1 decreased. The mRNA of laminin chains α2 and α4 also decreased. Matrix metalloproteinases 2 and 9 decreased, but the tissue inhibitors of metalloproteinases 1 and 2 did not change. Treating vitamin-A-deficient rats with retinoic acid reversed all alterations, but laminin chains α2, α4 and α5 and matrix metalloproteinase 2 remained low. In conclusion, vitamin A deficiency alters the subunit composition of collagen IV and laminin and the lung's proteolytic potential, which are partly reverted by retinoic acid. These alterations could contribute to impaired lung function and predispose to pulmonary disease.


Asunto(s)
Colágeno Tipo IV/metabolismo , Laminina/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Tretinoina/farmacología , Deficiencia de Vitamina A/metabolismo , Animales , Membrana Basal/metabolismo , Colágeno Tipo IV/genética , Femenino , Expresión Génica , Laminina/genética , Masculino , Ratas , Ratas Wistar , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Vitamina A/sangre , Deficiencia de Vitamina A/tratamiento farmacológico
6.
Alcohol Alcohol ; 48(1): 15-27, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23118092

RESUMEN

AIMS: Ethanol affects not only the cytoskeletal organization and activity, but also intracellular trafficking in neurons in the primary culture. Polyphosphoinositide (PPIn) are essential regulators of many important cell functions, including those mentioned, cytoskeleton integrity and intracellular vesicle trafficking. Since information about the effect of chronic ethanol exposure on PPIn metabolism in neurons is scarce, this study analysed the effect of this treatment on three of these phospholipids. METHODS: Phosphatidylinositol (PtdIns) levels as well as the activity and/or levels of enzymes involved in their metabolism were analysed in neurons chronically exposed to ethanol. The levels of phospholipases C and D, and phosphatidylethanol formation were also assessed. The consequence of the possible alterations in the levels of PtdIns on the Golgi complex (GC) was also analysed. RESULTS: We show that phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate levels, both involved in the control of intracellular trafficking and cytoskeleton organization, decrease in ethanol-exposed hippocampal neurons. In contrast, several kinases that participate in the metabolism of these phospholipids, and the level and/or activity of phospholipases C and D, increase in cells after ethanol exposure. Ethanol also promotes phosphatidylethanol formation in neurons, which can result in the suppression of phosphatidic acid synthesis and, therefore, in PPIn biosynthesis. This treatment also lowers the phosphatidylinositol 4-phosphate levels, the main PPIn in the GC, with alterations in their morphology and in the levels of some of the proteins involved in structure maintenance. CONCLUSIONS: The deregulation of the metabolism of PtdIns may underlie the ethanol-induced alterations on different neuronal processes, including intracellular trafficking and cytoskeletal integrity.


Asunto(s)
Etanol/toxicidad , Aparato de Golgi/efectos de los fármacos , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Células Cultivadas , Etanol/administración & dosificación , Femenino , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Hipocampo/metabolismo , Hipocampo/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
8.
Toxicol Sci ; 115(1): 202-13, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20133374

RESUMEN

Endocytosis is required for many cellular pivotal processes, including membrane recycling, nutrient uptake, and signal transduction. This complex process is particularly relevant in polarized cells, such as neurons. Previous studies have demonstrated that alcohol alters intracellular traffic, including endocytosis, in several cell types. However, information on the effect of chronic alcohol exposure on this process in neurons is scarce. As an approach, we investigated the effect of alcohol exposure on the internalization of two widely used endocytic markers, albumin and transferrin, in developing hippocampal neurons in primary culture. The effect of this treatment on the levels of several representative proteins involved in the endocytic process was also analyzed. Some of these proteins are also involved in the organization of the actin cytoskeleton. Pretreatment of cells with inhibitors chlorpromazine or nystatin indicates that albumin is internalized mainly by caveolin-dependent endocytosis. On the other hand, alcohol decreases the endocytosis of both markers, although no qualitative changes in the distribution of either of these molecules were observed. Finally, the effect of ethanol on the proteins analyzed was heterogeneous. Alcohol decreases the levels of clathrin, AP-2, SNX9, Rab5, Rab11, EEA1, Cdc42, or RhoA but increases the amount of Arf6. Moreover, alcohol does not affect the levels of caveolin1, dynamin1, Rab7, and LAMP2. This toxic effect of alcohol on endocytosis could affect some of the important neuronal activities, which depend on this process, including cell signaling. Our results in neurons also stress the notion that one of the main targets of ethanol is intracellular transport.


Asunto(s)
Depresores del Sistema Nervioso Central/toxicidad , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Etanol/toxicidad , Neuronas/efectos de los fármacos , Albúminas/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Biomarcadores/metabolismo , Células Cultivadas , Depresores del Sistema Nervioso Central/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Endosomas/metabolismo , Etanol/metabolismo , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/embriología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Neuronas/fisiología , Ratas , Transferrina/metabolismo
9.
J Nutr ; 140(4): 792-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20181784

RESUMEN

Chronic vitamin A deficiency induces a substantial delay in the rates of weight and height gain in both humans and experimental animals. This effect has been associated with an impaired nutrient metabolism and loss of body protein. Therefore, we analyzed the effect of vitamin A deficiency on endogenous proteolysis and nitrogen metabolism and its reversibility with all-trans retinoic acid (RA). Male weanling rats, housed in pairs, were pair-fed a vitamin A-deficient (VAD) or control diet until they were 60 d old. A group of deficient rats were further treated with daily intraperitoneal injections of all-trans RA for 10 d. Final body and tissue (i.e. liver and heart) weights were significantly lower and tissue:body weight ratios were similar in VAD rats and in controls. Conversely, the epididymal white fat:body weight ratio and the plasma concentrations of alanine aminotransferase and adiponectin were significantly higher in VAD rats, which also had hepatic macrovesicular lipid accumulations. Plasma and gastrocnemius muscle 3-methylhistidine, urine nitrogen, and plasma and urine urea concentrations were all significantly higher in the VAD group. The expression of the genes encoding urea cycle enzymes and their activities increased in VAD livers. These changes were partially reverted by all-trans RA. We propose that fuel partitioning in vitamin A deficiency may shift from fatty acids to protein catabolism as an energy source. Our results emphasize the importance of vitamin A on the energy balance control system and they provide an explanation for the role of vitamin A in protein turnover, development, and growth.


Asunto(s)
Antioxidantes/uso terapéutico , Hígado/metabolismo , Tretinoina/uso terapéutico , Urea/metabolismo , Deficiencia de Vitamina A/metabolismo , Animales , Antioxidantes/farmacología , Inducción Enzimática , Peroxidación de Lípido/efectos de los fármacos , Hígado/enzimología , Hígado/ultraestructura , Masculino , Metilhistidinas/sangre , Metilhistidinas/metabolismo , Músculo Esquelético/metabolismo , Nitrógeno/metabolismo , Ratas , Retinoides/sangre , Retinoides/metabolismo , Tretinoina/farmacología , Triglicéridos , Deficiencia de Vitamina A/tratamiento farmacológico , Deficiencia de Vitamina A/enzimología
10.
J Nutr Biochem ; 21(3): 227-36, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19269151

RESUMEN

Vitamin A is essential for lung development and pulmonary cell differentiation and its deficiency results in alterations of lung structure and function. Basement membranes (BMs) are also involved in those processes, and retinoic acid, the main biologically active form of vitamin A, influences the expression of extracellular matrix macromolecules. Therefore, we have analyzed the ultrastructure and collagen content of lung alveolar BM in growing rats deficient in vitamin A and the recovering effect of all-trans retinoic acid. Male weanling pups were fed a retinol-adequate or -deficient diet until they were 60 days old. A group of vitamin A-deficient pups were recovered by daily intraperitoneal injections of all-trans retinoic acid for 10 days. Alveolar BM in vitamin A-deficient rats doubled its thickness and contained irregularly scattered collagen fibrils. Immunocytochemistry revealed that these fibrils were composed of collagen I. Total content of both collagen I protein and its mRNA was greater in vitamin-deficient lungs. In agreement with the greater size of the BM the amount of collagen IV was also increased. Proinflammatory cytokines, IL-1alpha, IL-1beta and TNF-alpha, did not change, but myeloperoxidase and TGF-beta1 were increased. Treatment of vitamin A-deficient rats with retinoic acid reversed all the alterations, but the BM thickness recovered only partially. Retinoic acid recovering activity occurred in the presence of increasing oxidative stress. In conclusion, vitamin A deficiency results in alterations of the structure and composition of the alveolar BM which are probably mediated by TGF-beta1 and reverted by retinoic acid. These alterations could contribute to the impairment of lung function and predispose to pulmonary disease.


Asunto(s)
Membrana Basal/efectos de los fármacos , Alveolos Pulmonares/efectos de los fármacos , Tretinoina/uso terapéutico , Deficiencia de Vitamina A/patología , Deficiencia de Vitamina A/fisiopatología , Animales , Membrana Basal/ultraestructura , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inmunohistoquímica , Interleucinas/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alveolos Pulmonares/ultraestructura , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Factor de Crecimiento Transformador beta1/metabolismo , Tretinoina/efectos adversos , Tretinoina/sangre , Tretinoina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Deficiencia de Vitamina A/tratamiento farmacológico
11.
J Nutr ; 135(4): 695-701, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15795420

RESUMEN

Retinoids can modulate the expression of extracellular matrix (ECM) proteins with variable results depending on other contributing factors. Because changes in these proteins may alter the composition and impair the function of specialized ECM structures such as basement membranes (BMs), we studied the effects of vitamin A deficiency on renal BMs during the growing period. Newborn male rats were fed a vitamin A-deficient (VAD) diet for 50 d. The ultrastructure of renal BMs was analyzed by electron microscopy. Total collagen IV, the different alpha(IV) chains, matrix degrading metalloproteinases (MMP), and tissue inhibitors of metalloproteinases (TIMP) were quantified by immunocytochemistry and/or Western blotting. Tumor necrosis factor-alpha and interleukin-1beta were measured by ELISA. Semiquantitative RT-PCR was used for determining the steady-state levels for each alpha(IV) chain mRNA. VAD renal BMs showed an irregular thickening, particularly tubular BM. The total collagen IV content was increased, but there was a differential expression of the collagen IV chains. The protein amounts for alpha1(IV), alpha4(IV), and alpha5(IV) were similarly increased, whereas alpha2(IV) and alpha3(IV) were decreased. The levels of mRNA for each collagen IV chain changed in parallel with those of the corresponding protein. Both MMP2 and MMP9 were diminished, but no change was detected in TIMP1 or TIMP2. Our data indicate that nutritional VAD leads to alterations in the structure of renal BMs and to quantitative and qualitative variations in its collagen IV composition. These changes may be a factor predisposing to or resulting in kidney malfunction and renal disease.


Asunto(s)
Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Riñón/metabolismo , Deficiencia de Vitamina A/metabolismo , Animales , Secuencia de Bases , Membrana Basal/patología , Membrana Basal/ultraestructura , Colágeno Tipo IV/genética , Colágeno Tipo IV/ultraestructura , Cartilla de ADN , Femenino , Riñón/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Metaloproteinasas de la Matriz/metabolismo , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Deficiencia de Vitamina A/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA