Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 243: 1069-1077, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28764113

RESUMEN

Subcritical water has potential as an environmentally friendly solvent for applications including hydrolysis, liquefaction, extraction, and carbonization. Here, we report hydrolysis of sugarcane straw, an abundant byproduct of sugar production, in a semi-continuous reactor at reaction temperatures ranging from 190 to 260°C and at operating pressures of 9 and 16MPa. The target hydrolysis products were total reducing sugars. The main products of sugarcane straw hydrolysis were glucose, xylose, arabinose, and galactose in addition to 5- hydroxymethylfurfural and furfural as minor byproducts. Fourier transform infrared spectroscopy and thermogravimetric analysis provided additional information on the surface and bulk composition of the residual biomass. Char was present on samples treated at temperatures equal to and greater than 190°C. Samples treated at 260°C contained approximately 20wt% char, yet retained substantial hemicellulose and cellulose content. Hydrolysis temperature of 200°C provided the greatest TRS yield while minimizing char formation.


Asunto(s)
Biomasa , Carbohidratos , Saccharum , Hidrólisis , Agua
2.
Environ Sci Technol ; 47(7): 3513-20, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23356965

RESUMEN

Drawing from a series of field measurement activities including the Alternative Aviation Fuels Experiments (AAFEX1 and AAFEX2), we present experimental measurements of particle number, size, and composition-resolved mass that describe the physical and chemical evolution of aircraft exhaust plumes on the time scale of 5 s to 2-3 min. As the plume ages, the particle number emission index initially increases by a factor of 10-50, due to gas-to-particle formation of a nucleation/growth mode, and then begins to fall with increased aging. Increasing the fuel sulfur content causes the initial increase to occur more rapidly. The contribution of the nucleation/growth mode to the overall particle number density is most pronounced at idle power and decreases with increasing engine power. Increasing fuel sulfur content, but not fuel aromatic content causes the nucleation/growth mode to dominate the particle number emissions at higher powers than for a fuel with "normal" sulfur and aromatic content. Particle size measurements indicate that the observed particle number emissions trends are due to continuing gas-to-particle conversion and coagulation growth of the nucleation/growth mode particles, processes which simultaneously increase particle mass and reduce particle number density. Measurements of nucleation/growth mode mass are consistent with the interpretation of particle number and size data and suggest that engine exit plane measurements may underestimate the total particle mass by as much as a factor of between 5 and 10.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aeronaves , Atmósfera/química , Emisiones de Vehículos/análisis , Gasolina/análisis , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA