Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39197940

RESUMEN

Thalamocortical pathways from the rodent ventral posterior (VP) thalamic complex to the somatosensory cerebral cortex areas are a key model in modern neuroscience. However, beyond the intensively-studied projection from medial VP (VPM) to the primary somatosensory area (S1), the wiring of these pathways remains poorly characterized. We combined micropopulation tract-tracing and single-cell transfection experiments to map the pathways arising from different portions of the ventral posterior complex (VP) in male mice. We found that pathways originating from different VP regions show differences in area/lamina arborization pattern and axonal varicosity size. Neurons from the rostral VPM subnucleus innervate trigeminal S1 in point-to-point fashion. In contrast, a caudal VPM subnucleus innervates heavily and topographically S2, but not S1. Neurons in a third, intermediate VPM subnucleus innervate through branched axons both S1 and S2, with markedly different laminar patterns in each area. A small anterodorsal subnucleus selectively innervates dysgranular S1. The parvicellular VP subnucleus selectively targets the insular cortex, and adjacent portions of S1 and S2. Neurons in the rostral part of the lateral VP nucleus (VPL) innervate spinal S1, while caudal VPL neurons simultaneously target S1 and S2. Rostral and caudal VP nuclei show complementary patterns of calcium-binding protein expression. In addition to cortex, neurons in caudal VP subnuclei target the sensorimotor striatum. Our finding of a massive projection from VP to S2 separate from the VP projections to S1 adds critical anatomical evidence to the notion that different somatosensory submodalities are processed in parallel in S1 and S2.Significance statement Projections from the Ventral Posterior nucleus of the rodent thalamus (VP) to the primary somatosensory (S1) cortex are a paradigm in developmental and systems neuroscience. However, beyond the subset of axons that relay information from individual whiskers to the S1, VP pathways remain poorly characterized. Here, we combined micropopulation tracing and single-cell labeling to produce a full account of the pathways arising from VP in male mice. We identify several VP subnuclei, each characterized by a specific thalamocortical axon wiring motif. Importantly, we show that the second somatosensory area (S2) is robustly and topographically innervated by specific populations of VP neurons, indicating that, at least for some somatosensory submodalities, S2 is primary in function and hierarchically equivalent to S1.

2.
J Vis Exp ; (209)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39141557

RESUMEN

Chronic electrophysiological recordings in rodents have significantly improved our understanding of neuronal dynamics and their behavioral relevance. However, current methods for chronically implanting probes present steep trade-offs between cost, ease of use, size, adaptability, and long-term stability. This protocol introduces a novel chronic probe implant system for mice called the DREAM (Dynamic, Recoverable, Economical, Adaptable, and Modular), designed to overcome the trade-offs associated with currently available options. The system provides a lightweight, modular and cost-effective solution with standardized hardware elements that can be combined and implanted in straightforward steps and explanted safely for recovery and multiple reuse of probes, significantly reducing experimental costs. The DREAM implant system integrates three hardware modules: (1) a microdrive that can carry all standard silicon probes, allowing experimenters to adjust recording depth across a travel distance of up to 7 mm; (2) a three-dimensional (3D)-printable, open-source design for a wearable Faraday cage covered in copper mesh for electrical shielding, impact protection, and connector placement, and (3) a miniaturized head-fixation system for improved animal welfare and ease of use. The corresponding surgery protocol was optimized for speed (total duration: 2 h), probe safety, and animal welfare. The implants had minimal impact on animals' behavioral repertoire, were easily applicable in freely moving and head-fixed contexts, and delivered clearly identifiable spike waveforms and healthy neuronal responses for weeks of post-implant data collection. Infections and other surgery complications were extremely rare. As such, the DREAM implant system is a versatile, cost-effective solution for chronic electrophysiology in mice, enhancing animal well-being, and enabling more ethologically sound experiments. Its design simplifies experimental procedures across various research needs, increasing accessibility of chronic electrophysiology in rodents to a wide range of research labs.


Asunto(s)
Electrodos Implantados , Electrofisiología , Animales , Ratones , Electrofisiología/instrumentación , Electrofisiología/métodos , Conducta Animal/fisiología , Fenómenos Electrofisiológicos , Análisis Costo-Beneficio
3.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915609

RESUMEN

In dynamic environments with volatile rewards the anterior cingulate cortex (ACC) is believed to determine whether a visual object is relevant and should be chosen. The ACC may achieve this by integrating reward information over time to estimate which objects are worth to explore and which objects should be avoided. Such a higher-order meta-awareness about which objects should be explored predicts that the ACC causally contributes to choices when the reward values of objects are unknown and must be inferred from ongoing exploration. We tested this suggestion in nonhuman primates using a learning task that varied the number of object features that could be relevant, and by controlling the motivational value of choosing objects. During learning the ACC was transiently micro-stimulated when subjects foveated the to-be-chosen stimulus. We found that stimulation selectively impaired learning when feature uncertainty and motivational value of choices were high, which was linked to a deficit in using reward outcomes for feature-specific credit assignment. Application of an adaptive reinforcement learning model confirmed a primary deficit in weighting prediction errors that led to a meta-learning impairment to adaptively increase exploration during learning and to an impaired use of working memory to support learning. These findings provide causal evidence that the reward history traces in ACC are essential for meta-adjusting the exploration-exploitation balance and the strength of working memory of object values during adaptive behavior.

4.
PLoS Comput Biol ; 20(4): e1012000, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38640119

RESUMEN

Trial-averaged metrics, e.g. tuning curves or population response vectors, are a ubiquitous way of characterizing neuronal activity. But how relevant are such trial-averaged responses to neuronal computation itself? Here we present a simple test to estimate whether average responses reflect aspects of neuronal activity that contribute to neuronal processing. The test probes two assumptions implicitly made whenever average metrics are treated as meaningful representations of neuronal activity: Reliability: Neuronal responses repeat consistently enough across trials that they convey a recognizable reflection of the average response to downstream regions.Behavioural relevance: If a single-trial response is more similar to the average template, it is more likely to evoke correct behavioural responses. We apply this test to two data sets: (1) Two-photon recordings in primary somatosensory cortices (S1 and S2) of mice trained to detect optogenetic stimulation in S1; and (2) Electrophysiological recordings from 71 brain areas in mice performing a contrast discrimination task. Under the highly controlled settings of Data set 1, both assumptions were largely fulfilled. In contrast, the less restrictive paradigm of Data set 2 met neither assumption. Simulations predict that the larger diversity of neuronal response preferences, rather than higher cross-trial reliability, drives the better performance of Data set 1. We conclude that when behaviour is less tightly restricted, average responses do not seem particularly relevant to neuronal computation, potentially because information is encoded more dynamically. Most importantly, we encourage researchers to apply this simple test of computational relevance whenever using trial-averaged neuronal metrics, in order to gauge how representative cross-trial averages are in a given context.


Asunto(s)
Neuronas , Neurociencias , Corteza Somatosensorial , Animales , Ratones , Neurociencias/métodos , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Modelos Neurológicos , Optogenética/métodos , Biología Computacional/métodos , Reproducibilidad de los Resultados , Simulación por Computador
5.
Neuroinformatics ; 22(1): 23-43, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37864741

RESUMEN

Current mesoscale connectivity atlases provide limited information about the organization of thalamocortical projections in the mouse brain. Labeling the projections of spatially restricted neuron populations in thalamus can provide a functionally relevant level of connectomic analysis, but these need to be integrated within the same common reference space. Here, we present a pipeline for the segmentation, registration, integration and analysis of multiple tract-tracing experiments. The key difference with other workflows is that the data is transformed to fit the reference template. As a test-case, we investigated the axonal projections and intranuclear arrangement of seven neuronal populations of the ventral posteromedial nucleus of the thalamus (VPM), which we labeled with an anterograde tracer. Their soma positions corresponded, from dorsal to ventral, to cortical representations of the whiskers, nose and mouth. They strongly targeted layer 4, with the majority exclusively targeting one cortical area and the ones in ventrolateral VPM branching to multiple somatosensory areas. We found that our experiments were more topographically precise than similar experiments from the Allen Institute and projections to the primary somatosensory area were in agreement with single-neuron morphological reconstructions from publicly available databases. This pilot study sets the basis for a shared virtual connectivity atlas that could be enriched with additional data for studying the topographical organization of different thalamic nuclei. The pipeline is accessible with only minimal programming skills via a Jupyter Notebook, and offers multiple visualization tools such as cortical flatmaps, subcortical plots and 3D renderings and can be used with custom anatomical delineations.


Asunto(s)
Neuronas , Tálamo , Ratones , Animales , Vías Nerviosas/fisiología , Proyectos Piloto , Tálamo/anatomía & histología , Neuronas/fisiología , Axones
6.
Front Neuroinform ; 17: 1272243, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107469

RESUMEN

Characterizing the connectomic and morphological diversity of thalamic neurons is key for better understanding how the thalamus relays sensory inputs to the cortex. The recent public release of complete single-neuron morphological reconstructions enables the analysis of previously inaccessible connectivity patterns from individual neurons. Here we focus on the Ventral Posteromedial (VPM) nucleus and characterize the full diversity of 257 VPM neurons, obtained by combining data from the MouseLight and Braintell projects. Neurons were clustered according to their most dominantly targeted cortical area and further subdivided by their jointly targeted areas. We obtained a 2D embedding of morphological diversity using the dissimilarity between all pairs of axonal trees. The curved shape of the embedding allowed us to characterize neurons by a 1-dimensional coordinate. The coordinate values were aligned both with the progression of soma position along the dorsal-ventral and lateral-medial axes and with that of axonal terminals along the posterior-anterior and medial-lateral axes, as well as with an increase in the number of branching points, distance from soma and branching width. Taken together, we have developed a novel workflow for linking three challenging aspects of connectomics, namely the topography, higher order connectivity patterns and morphological diversity, with VPM as a test-case. The workflow is linked to a unified access portal that contains the morphologies and integrated with 2D cortical flatmap and subcortical visualization tools. The workflow and resulting processed data have been made available in Python, and can thus be used for modeling and experimentally validating new hypotheses on thalamocortical connectivity.

8.
Biol Cybern ; 116(1): 53-68, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34816322

RESUMEN

An increasingly popular approach to the analysis of neural data is to treat activity patterns as being constrained to and sampled from a manifold, which can be characterized by its topology. The persistent homology method identifies the type and number of holes in the manifold, thereby yielding functional information about the coding and dynamic properties of the underlying neural network. In this work, we give examples of highly nonlinear manifolds in which the persistent homology algorithm fails when it uses the Euclidean distance because it does not always yield a good approximation to the true distance distribution of a point cloud sampled from a manifold. To deal with this issue, we instead estimate the geodesic distance which is a better approximation of the true distance distribution and can therefore be used to successfully identify highly nonlinear features with persistent homology. To document the utility of the method, we utilize a toy model comprised of a circular manifold, built from orthogonal sinusoidal coordinate functions and show how the choice of metric determines the performance of the persistent homology algorithm. Furthermore, we explore the robustness of the method across different manifold properties, like the number of samples, curvature and amount of added noise. We point out strategies for interpreting its results as well as some possible pitfalls of its application. Subsequently, we apply this analysis to neural data coming from the Visual Coding-Neuropixels dataset recorded at the Allen Institute in mouse visual cortex in response to stimulation with drifting gratings. We find that different manifolds with a non-trivial topology can be seen across regions and stimulus properties. Finally, we interpret how these changes in manifold topology along with stimulus parameters and cortical region inform how the brain performs visual computation.


Asunto(s)
Algoritmos , Corteza Visual , Animales , Encéfalo , Ratones , Redes Neurales de la Computación
10.
Neuroinformatics ; 20(1): 25-36, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33506383

RESUMEN

There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.


Asunto(s)
Neurociencias , Reproducibilidad de los Resultados
11.
J Cogn Neurosci ; 34(1): 79-107, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34813644

RESUMEN

Flexible learning of changing reward contingencies can be realized with different strategies. A fast learning strategy involves using working memory of recently rewarded objects to guide choices. A slower learning strategy uses prediction errors to gradually update value expectations to improve choices. How the fast and slow strategies work together in scenarios with real-world stimulus complexity is not well known. Here, we aim to disentangle their relative contributions in rhesus monkeys while they learned the relevance of object features at variable attentional load. We found that learning behavior across six monkeys is consistently best predicted with a model combining (i) fast working memory and (ii) slower reinforcement learning from differently weighted positive and negative prediction errors as well as (iii) selective suppression of nonchosen feature values and (iv) a meta-learning mechanism that enhances exploration rates based on a memory trace of recent errors. The optimal model parameter settings suggest that these mechanisms cooperate differently at low and high attentional loads. Whereas working memory was essential for efficient learning at lower attentional loads, enhanced weighting of negative prediction errors and meta-learning were essential for efficient learning at higher attentional loads. Together, these findings pinpoint a canonical set of learning mechanisms and suggest how they may cooperate when subjects flexibly adjust to environments with variable real-world attentional demands.


Asunto(s)
Memoria a Corto Plazo , Refuerzo en Psicología , Animales , Atención , Macaca mulatta , Recompensa
12.
Biol Cybern ; 115(5): 487-517, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34628539

RESUMEN

Neural circuits contain a wide variety of interneuron types, which differ in their biophysical properties and connectivity patterns. The two most common interneuron types, parvalbumin-expressing and somatostatin-expressing cells, have been shown to be differentially involved in many cognitive functions. These cell types also show different relationships with the power and phase of oscillations in local field potentials. The mechanisms that underlie the emergence of different oscillatory rhythms in neural circuits with more than one interneuron subtype, and the roles specific interneurons play in those mechanisms, are not fully understood. Here, we present a comprehensive analysis of all possible circuit motifs and input regimes that can be achieved in circuits comprised of excitatory cells, PV-like fast-spiking interneurons and SOM-like low-threshold spiking interneurons. We identify 18 unique motifs and simulate their dynamics over a range of input strengths. Using several characteristics, such as oscillation frequency, firing rates, phase of firing and burst fraction, we cluster the resulting circuit dynamics across motifs in order to identify patterns of activity and compare these patterns to behaviors that were generated in circuits with one interneuron type. In addition to the well-known PING and ING gamma oscillations and an asynchronous state, our analysis identified three oscillatory behaviors that were generated by the three-cell-type motifs only: theta-nested gamma oscillations, stable beta oscillations and theta-locked bursting behavior, which have also been observed in experiments. Our characterization provides a map to interpret experimental activity patterns and suggests pharmacological manipulations or optogenetics approaches to validate these conclusions.


Asunto(s)
Interneuronas , Parvalbúminas
13.
Neurosci Biobehav Rev ; 128: 569-591, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34119523

RESUMEN

Over the past decade there has been a rapid improvement in techniques for obtaining large-scale cellular level data related to the mouse brain connectome. However, a detailed mapping of cell-type-specific projection patterns is lacking, which would, for instance, allow us to study the role of circuit motifs in cognitive processes. In this work, we review advanced neuroanatomical and data fusion techniques within the context of a proposed Multimodal Connectomic Integration Framework for augmenting the cellularly resolved mouse mesoconnectome. First, we emphasize the importance of registering data modalities to a common reference atlas. We then review a number of novel experimental techniques that can provide data for characterizing cell-types in the mouse brain. Furthermore, we examine a number of data integration strategies, which involve fine-grained cell-type classification, spatial inference of cell densities, latent variable models for the mesoconnectome and multi-modal factorisation. Finally, we discuss a number of use cases which depend on connectome augmentation techniques, such as model simulations of functional connectivity and generating mechanistic hypotheses for animal disease models.


Asunto(s)
Conectoma , Neuroanatomía , Animales , Encéfalo , Ratones
14.
Elife ; 102021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34142661

RESUMEN

Inhibitory interneurons are believed to realize critical gating functions in cortical circuits, but it has been difficult to ascertain the content of gated information for well-characterized interneurons in primate cortex. Here, we address this question by characterizing putative interneurons in primate prefrontal and anterior cingulate cortex while monkeys engaged in attention demanding reversal learning. We find that subclasses of narrow spiking neurons have a relative suppressive effect on the local circuit indicating they are inhibitory interneurons. One of these interneuron subclasses showed prominent firing rate modulations and (35-45 Hz) gamma synchronous spiking during periods of uncertainty in both, lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC). In LPFC, this interneuron subclass activated when the uncertainty of attention cues was resolved during flexible learning, whereas in ACC it fired and gamma-synchronized when outcomes were uncertain and prediction errors were high during learning. Computational modeling of this interneuron-specific gamma band activity in simple circuit motifs suggests it could reflect a soft winner-take-all gating of information having high degree of uncertainty. Together, these findings elucidate an electrophysiologically characterized interneuron subclass in the primate, that forms gamma synchronous networks in two different areas when resolving uncertainty during adaptive goal-directed behavior.


Asunto(s)
Rayos gamma , Giro del Cíngulo , Interneuronas , Aprendizaje/fisiología , Corteza Prefrontal , Animales , Atención/fisiología , Células Cultivadas , Sincronización Cortical/fisiología , Señales (Psicología) , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Interneuronas/citología , Interneuronas/fisiología , Macaca mulatta , Masculino , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología
15.
Neuroinformatics ; 19(4): 649-667, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33704701

RESUMEN

Finding links between genes and structural connectivity is of the utmost importance for unravelling the underlying mechanism of the brain connectome. In this study we identify links between the gene expression and the axonal projection density in the mouse brain, by applying a modified version of the Linked ICA method to volumetric data from the Allen Institute for Brain Science for identifying independent sources of information that link both modalities at the voxel level. We performed separate analyses on sets of projections from the visual cortex, the caudoputamen and the midbrain reticular nucleus, and we determined those brain areas, injections and genes that were most involved in independent components that link both gene expression and projection density data, while we validated their biological context through enrichment analysis. We identified representative and literature-validated cortico-midbrain and cortico-striatal projections, whose gene subsets were enriched with annotations for neuronal and synaptic function and related developmental and metabolic processes. The results were highly reproducible when including all available projections, as well as consistent with factorisations obtained using the Dictionary Learning and Sparse Coding technique. Hence, Linked ICA yielded reproducible independent components that were preserved under increasing data variance. Taken together, we have developed and validated a novel paradigm for linking gene expression and structural projection patterns in the mouse mesoconnectome, which can power future studies aiming to relate genes to brain function.


Asunto(s)
Conectoma , Animales , Axones , Encéfalo/diagnóstico por imagen , Cuerpo Estriado , Expresión Génica , Ratones
16.
17.
Neural Comput ; 33(4): 926-966, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33513330

RESUMEN

Neuronal networks in rodent primary visual cortex (V1) can generate oscillations in different frequency bands depending on the network state and the level of visual stimulation. High-frequency gamma rhythms, for example, dominate the network's spontaneous activity in adult mice but are attenuated upon visual stimulation, during which the network switches to the beta band instead. The spontaneous local field potential (LFP) of juvenile mouse V1, however, mainly contains beta rhythms and presenting a stimulus does not elicit drastic changes in network oscillations. We study, in a spiking neuron network model, the mechanism in adult mice allowing for flexible switches between multiple frequency bands and contrast this to the network structure in juvenile mice that lack this flexibility. The model comprises excitatory pyramidal cells (PCs) and two types of interneurons: the parvalbumin-expressing (PV) and the somatostatinexpressing (SOM) interneuron. In accordance with experimental findings, the pyramidal-PV and pyramidal-SOM cell subnetworks are associated with gamma and beta oscillations, respectively. In our model, they are both generated via a pyramidal-interneuron gamma (PING) mechanism, wherein the PCs drive the oscillations. Furthermore, we demonstrate that large but not small visual stimulation activates SOM cells, which shift the frequency of resting-state gamma oscillations produced by the pyramidal-PV cell subnetwork so that beta rhythms emerge. Finally, we show that this behavior is obtained for only a subset of PV and SOM interneuron projection strengths, indicating that their influence on the PCs should be balanced so that they can compete for oscillatory control of the PCs. In sum, we propose a mechanism by which visual beta rhythms can emerge from spontaneous gamma oscillations in a network model of the mouse V1; for this mechanism to reproduce V1 dynamics in adult mice, balance between the effective strengths of PV and SOM cells is required.

18.
J Neurosci ; 40(40): 7702-7713, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32900834

RESUMEN

Theta-band (∼6 Hz) rhythmic activity within and over the medial PFC ("midfrontal theta") has been identified as a distinctive signature of "response conflict," the competition between multiple actions when only one action is goal-relevant. Midfrontal theta is traditionally conceptualized and analyzed under the assumption that it is a unitary signature of conflict that can be uniquely identified at one electrode (typically FCz). Here we recorded simultaneous MEG and EEG (total of 328 sensors) in 9 human subjects (7 female) and applied a feature-guided multivariate source-separation decomposition to determine whether conflict-related midfrontal theta is a unitary or multidimensional feature of the data. For each subject, a generalized eigendecomposition yielded spatial filters (components) that maximized the ratio between theta and broadband activity. Components were retained based on significance thresholding and midfrontal EEG topography. All of the subjects individually exhibited multiple (mean 5.89, SD 2.47) midfrontal components that contributed to sensor-level midfrontal theta power during the task. Component signals were temporally uncorrelated and asynchronous, suggesting that each midfrontal theta component was unique. Our findings call into question the dominant notion that midfrontal theta represents a unitary process. Instead, we suggest that midfrontal theta spans a multidimensional space, indicating multiple origins, but can manifest as a single feature at the sensor level because of signal mixing.SIGNIFICANCE STATEMENT "Midfrontal theta" is a rhythmic electrophysiological signature of the competition between multiple response options. Midfrontal theta is traditionally considered to reflect a single process. However, this assumption could be erroneous because of "mixing" (multiple sources contributing to the activity recorded at a single electrode). We investigated the dimensionality of midfrontal theta by applying advanced multivariate analysis methods to a multimodal MEG/EEG dataset. We identified multiple topographically overlapping neural sources that drove response conflict-related midfrontal theta. Midfrontal theta thus reflects multiple uncorrelated signals that manifest with similar EEG scalp projections. In addition to contributing to the cognitive control literature, we demonstrate both the feasibility and the necessity of signal demixing to understand the narrowband neural dynamics underlying cognitive processes.


Asunto(s)
Conflicto Psicológico , Ritmo Teta , Adulto , Femenino , Lóbulo Frontal/fisiología , Humanos , Magnetoencefalografía/métodos , Masculino
19.
Nat Commun ; 11(1): 3075, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555174

RESUMEN

The processing steps that lead up to a decision, i.e., the transformation of sensory evidence into motor output, are not fully understood. Here, we combine stereoEEG recordings from the human cortex, with single-lead and time-resolved decoding, using a wide range of temporal frequencies, to characterize decision processing during a rule-switching task. Our data reveal the contribution of rostral inferior parietal lobule (IPL) regions, in particular PFt, and the parietal opercular regions in decision processing and demonstrate that the network representing the decision is common to both task rules. We reconstruct the sequence in which regions engage in decision processing on single trials, thereby providing a detailed picture of the network dynamics involved in decision-making. The reconstructed timeline suggests that the supramarginal gyrus in IPL links decision regions in prefrontal cortex with premotor regions, where the motor plan for the response is elaborated.


Asunto(s)
Toma de Decisiones , Electroencefalografía , Lóbulo Parietal/fisiología , Adulto , Mapeo Encefálico , Análisis por Conglomerados , Cognición , Análisis Discriminante , Electrodos , Epilepsia/diagnóstico por imagen , Epilepsia/fisiopatología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Red Nerviosa/fisiología , Procesamiento de Señales Asistido por Computador , Análisis de Ondículas , Adulto Joven
20.
Trends Neurosci ; 43(5): 285-299, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32353333

RESUMEN

To compare findings across species, neuroscience relies on cross-species homologies, particularly in terms of brain areas. For cingulate cortex, a structure implicated in behavioural adaptation and control, a homologous definition across mammals is available - but currently not employed by most rodent researchers. The standard partitioning of rodent cingulate cortex is inconsistent with that in any other model species, including humans. Reviewing the existing literature, we show that the homologous definition better aligns results of rodent studies with those of other species, and reveals a clearer structural and functional organisation within rodent cingulate cortex itself. Based on these insights, we call for widespread adoption of the homologous nomenclature, and reinterpretation of previous studies originally based on the nonhomologous partitioning of rodent cingulate cortex.


Asunto(s)
Giro del Cíngulo , Roedores , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA