Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1002663

RESUMEN

Objectives@#Osteoporotic fracture is a significant public health burden associated with increased mortality risk and substantial healthcare costs. Accurate and early identification of high-risk individuals and mitigation of their risks is a core part of the treatment and prevention of fractures. Here we introduce a digital tool called 'BONEcheck' for personalized assessment of bone health. @*Methods@#The development of BONEcheck primarily utilized data from the prospective population-based Dubbo Osteoporosis Epidemiology Study and the Danish Nationwide Registry. BONEcheck has 3 modules: input data, risk estimates, and risk context. Input variables include age, gender, prior fracture, fall incidence, bone mineral density (BMD), comorbidities, and genetic variants associated with BMD. @*Results@#Based on the input variables, BONEcheck estimates the probability of any fragility fracture and hip fracture within 5 years, subsequent fracture risk, skeletal age, and time to reach osteoporosis. The probability of fracture is shown in both numeric and human icon array formats. The risk is also contextualized within the framework of treatment and management options on Australian guidelines, with consideration given to the potential fracture risk reduction and survival benefits. Skeletal age was estimated as the sum of chronological age and years of life lost due to a fracture or exposure to risk factors that elevate mortality risk. @*Conclusions@#BONEcheck is an innovative tool that empowers doctors and patients to engage in wellinformed discussions and make decisions based on the patient's risk profile. Public access to BONEcheck is available via https://bonecheck.org and in Apple Store (iOS) and Google Play (Android).

2.
Appl Opt ; 61(10): 2518-2524, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35471317

RESUMEN

This study presents a comprehensive method for designing a multifocal contact lens (MCL) with Snell's law and non-uniform rational B-spline (NURBS) curves. Instead of using thin lens approximation, general mathematical formulas have been developed to achieve the accurate coordinates of points on the anterior lens surface profile of the MCL to meet various given optical power distributions. Then the NURBS curve is adjusted to fit these data points to obtain the smooth front lens surface profile. This method not only improves the accuracy of the optical power profiles of MCLs but also reduces the spherical aberration in near/distance optical zones. The experimental results show that the power profiles of soft MCLs agree with those of the simulation results and original design requirements. The proposed method has been proven for the MCL design, and it can be feasibly applied in complex optical lens designs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA