Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287768

RESUMEN

Fluorosis is a worldwide public health problem, in which the heart is an important target organ. However, studies on its toxicological mechanism in embryonic development are limited. This study assessed the toxicity of sodium fluoride (NaF) toward zebrafish embryos. We determined the mortality, hatching rate, phenotypic malformation, heart function, and morphology of zebrafish embryos after exposure to NaF. Subsequently, the molecular mechanism was revealed using high-throughput RNA sequencing analysis. The expression levels of key genes for heart development were detected using quantitative real-time reverse transcription PCR. The 50% lethal concentration (LC50) value of NaF toward zebrafish embryos at 96 h post-fertilization was 335.75 mg/L. When the concentration of NaF was higher than 200 mg/L, severe deformities, such as pericardial edema, yolk sac edema, spine curvature, shortened body length, reduced head area, and eye area, were observed. The heart rate of the embryos exposed to NaF decreased in a dose-dependent fashion. The distance between the sinus venosus and bulbus arteriosus was significantly increased in the NaF-exposed group compared with that in the control group. The stroke volume and cardiac output decreased significantly in the NaF groups. Compared with the control group, the expression levels of Gata4, Tbx5a, Hand2, Tnnt2c, Nppa, and Myh6 were significantly increased in the NaF-treated group. Through transcriptome sequencing, 1354 differentially expressed genes (DEGs) were detected in the NaF (200 mg/L) treated groups, including 1253 upregulated genes and 101 downregulated genes. Gene ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEGs showed that cardiac-related pathways, such as actin cytoskeleton regulation, Jak-Stat, PI3k-Akt, and Ras, were activated in the NaF-exposed group. This study revealed the underlying mechanism of fluoride-induced cardiac morphological and functional abnormalities and provides clues for the clinical prevention and treatment of fluorosis.

2.
Front Public Health ; 11: 1247294, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711250

RESUMEN

Introduction: Fluoride is considered an environmental pollutant that seriously affects organisms and ecosystems, and its harmfulness is a perpetual public health concern. The toxic effects of fluoride include organelle damage, oxidative stress, cell cycle destruction, inflammatory factor secretion, apoptosis induction, and synaptic nerve transmission destruction. To reveal the mechanism of fluorosis-induced brain damage, we analyzed the molecular mechanism and learning and memory function of the SIRT1-mediated BDNF-TrkB signaling pathway cascade reaction in fluorosis-induced brain damage through in vivo experiments. Methods: This study constructed rat models of drinking water fluorosis using 50 mg/L, 100 mg/L, and 150 mg/L fluoride, and observed the occurrence of dental fluorosis in the rats. Subsequently, we measured the fluoride content in rat blood, urine, and bones, and measured the rat learning and memory abilities. Furthermore, oxidative stress products, inflammatory factor levels, and acetylcholinesterase (AchE) and choline acetyltransferase (ChAT) activity were detected. The pathological structural changes to the rat bones and brain tissue were observed. The SIRT1, BDNF, TrkB, and apoptotic protein levels were determined using western blotting. Results: All rats in the fluoride exposure groups exhibited dental fluorosis; decreased learning and memory abilities; and higher urinary fluoride, bone fluoride, blood fluoride, oxidative stress product, and inflammatory factor levels compared to the control group. The fluoride-exposed rat brain tissue had abnormal AchE and ChAT activity, sparsely arranged hippocampal neurons, blurred cell boundaries, significantly fewer astrocytes, and swollen cells. Furthermore, the nucleoli were absent from the fluoride-exposed rat brain tissue, which also contained folded neuron membranes, deformed mitochondria, absent cristae, vacuole formation, and pyknotic and hyperchromatic chromatin. The fluoride exposure groups had lower SIRT1, BDNF, and TrkB protein levels and higher apoptotic protein levels than the control group, which were closely related to the fluoride dose. The findings demonstrated that excessive fluoride caused brain damage and affected learning and memory abilities. Discussion: Currently, there is no effective treatment method for the tissue damage caused by fluorosis. Therefore, the effective method for preventing and treating fluorosis damage is to control fluoride intake.


Asunto(s)
Lesiones Encefálicas , Fluorosis Dental , Animales , Ratas , Acetilcolinesterasa , Encéfalo , Factor Neurotrófico Derivado del Encéfalo , Ecosistema , Fluoruros/toxicidad , Transducción de Señal , Sirtuina 1
3.
Discov Oncol ; 14(1): 156, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37639070

RESUMEN

BACKGROUND: 3D cancer stem cell (CSC) cultures are widely used as in vitro tumor models. In this study, we determined the effects of enriching HCT116 tumor spheres initially cultured in serum-free medium with different concentrations of serum, focusing on the effect of microserum environment stimulation on extraction and biological function of colorectal cancer stem cells (CCSCs). METHODS: CCSCs were enriched in standard serum-free medium and serum-free medium with different concentrations of serum for 1 week. The expression of CSC-associated markers in CCSCs, and the presence and relative proportion of CSCs (CD133/CD44 cell sorting) were then determined to elucidate the effect of the microserum environment on the preservation of CSC-related features. Further, the tumorigenic capacity of CCSCs was evaluated in an immunodeficiency mouse model. RESULTS: Our data indicated that a significantly greater number of spheres with a greater size range and high viability without drastic alteration in biological and structural features, which maintained self-renewal potential after sequential passages were formed after serum supplementation. Real-time analysis showed that both serum spheres and serum-free spheres displayed similar expression patterns for key stemness genes. Serum spheres showed higher expression of the CSC surface markers CD133 and CD44 than did CSCs spheres cultured in serum-free medium. Adherent cultures in complete medium could adapt to the serum-containing microenvironment faster and showed higher proliferation ability. The addition of serum induced EMT and promoted the migration and invasion of serum globular cells. Compared with serum-free cells and adherent cells, serum spheres showed higher tumor initiation ability. CONCLUSIONS: Microserum environment stimulation could be an effective strategy for reliable enrichment of intact CCSCs, and a more efficient CSC enrichment method.

4.
Front Pharmacol ; 12: 658628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981236

RESUMEN

Background: Metagentiana rhodantha (Franch.) T.N.Ho and S.W.Liu (MR) belongs to Gentianales, and it is often called Hong-hua-long-dan in Chinese. Traditionally, it has been used to cure acute icteric hepatitis, sore throat, dysentery, acute gastritis, carbuncle, and furuncle based on traditional Chinese medicine (TCM) concepts. Aim of Study: This review manages to provide a critical and comprehensive analysis on the traditional uses, phytochemistry, pharmacology, toxicology, and clinical uses of MR and to evaluate the therapeutic potential of this plant. Methods: Relevant data mainly literatures on MR were selected from available database. All the papers reviewed provided evidence that the source herbs were reliably identified. Results: The heat-clearing and removing the phlegm, and purging fire and removing toxicity of MR contribute to its dispelling jaundice, and clearing lung heat and cough. The compounds isolated from this plant include iridoids and secoiridoids, phenolic acids, ketones, triterpenoids, flavonoids, benzophenone glycosides, and others. Mangiferin (MAF) is a characteristic substance from this plant. The pharmacological studies show that some extracts and compounds from MR exhibit anti-inflammatory, antinociceptive, antibacterial, hepatoprotective, cardioprotective, and other effects which are associated with the traditional uses of this plant. The toxicological studies suggest that MAF is less toxic in mice and dogs. Nowadays, Chinese patent drugs such as Feilike Jiaonang and Kangfuling Jiaonang containing MR have been used to cure cough, asthma, chronic bronchitis, dysmenorrhea, and appendagitis. Conclusion: Although the current studies provide related research information of MR, it is still necessary to systemically evaluate the chemistry, pharmacology, toxicity, and safety of the extracts or compounds from this plant before clinical trials in the future. In addition, except for lung infection-related diseases, analgesia, anti-tumor, and hypertriglycemia may be new and prior therapeutic scopes of this ethnomedicine in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA