Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mini Rev Med Chem ; 18(3): 244-275, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28302039

RESUMEN

Arthritis is marked by joint deterioration that affects articular cartilage and subchondral bone. Though cartilage degradation does the major damage during arthritis, subsequent bone degeneration cannot be neglected. Recent progress in arthritis research has identified the clinical importance of bone erosion in destructive arthritis. Studies have showed the key role played by osteoclasts and receptor activator of nuclear factor kappaB ligand (RANKL) signaling in bone erosion. Cathepsins and tartrate resistant acid phosphatase (TRAP) are considered key enzymatic factors contributing to bone erosion. Further, reactive oxygen species (ROS) formed at the ruffled border of osteoclasts also causes bone resorption and matrix degradation. Besides, severe inflammation during arthritis induces bone erosion by aiding in Ca2+ removal and activating osteoclastogenesis. The inflammatory cytokines and ROS influence osteoclast differentiation by regulating osteoclast-lineage cells or by acting on other cells to regulate the expression of RANKL and osteoprotegerin (OPG). The enhanced production of pro-inflammatory cytokines and ROS in arthritis stimulates tissue injury by means of oxidative damage leading to vital organ damage and synovial and circulatory cell apoptosis. Thus, blocking enzymatic and non-enzymatic factors responsible for bone erosion and inflammation is considered a prime strategy in the management of arthritis. In this review we provide an overview of the mechanisms of bone erosion, inflammation and associated oxidative stress/damage during arthritis perpetuation along with shedding light on potential targets. The article also describes the possible natural therapeutic agents that could prevent bone loss and inflammation, and related secondary complications of arthritis.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Resorción Ósea/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Animales , Artritis Reumatoide/complicaciones , Productos Biológicos/química , Humanos
2.
J Thromb Thrombolysis ; 43(2): 209-216, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27804000

RESUMEN

Oxidative stress-induced platelet apoptosis is one among the many causes for the development and progression of many disorders like cardiovascular diseases, arthritis, Alzheimer's disease and many chronic inflammatory responses. Many studies have demonstrated the less optimal effect of N-acetyl cysteine (NAC) in oxidative stress-induced cellular damage. This could be due to its less lipophilicity which makes it difficult to enter the cellular membrane. Therefore in the present study, lipophilic sila-amide derivatives (6a and 6b) synthesized through the reaction of NAC with 3-Aminopropyltrimethylsilane and aminomethyltrimethylsilane were used to determine their protective property against oxidative stress-induced platelet apoptosis. At a concentration of 10 µM, compound 6a and 6b were able to significantly inhibit Rotenone/H2O2 induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cytochrome c release from mitochondrial to the cytosol, caspase-9 and -3 activity and phosphatidylserine externalization. Therefore, the compounds can be extrapolated as therapeutic agents to protect platelets from oxidative stress-induced platelet apoptosis and its associated complications.


Asunto(s)
Acetilcisteína/farmacología , Apoptosis , Plaquetas/efectos de los fármacos , Estrés Oxidativo , Acetilcisteína/química , Amidas , Permeabilidad de la Membrana Celular , Células Cultivadas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Sustancias Protectoras/química , Silanos/química , Silanos/farmacología , Relación Estructura-Actividad
3.
Int J Biol Macromol ; 86: 917-28, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26893053

RESUMEN

Hyaluronic acid (HA), is a glycosaminoglycan comprised of repeating disaccharide units of N-acetyl-D-glucosamine and D-glucuronic acid. HA is synthesized by hyaluronan synthases and reaches sizes in excess of 2MDa. It plays numerous roles in normal tissues but also has been implicated in inflammatory processes, multiple drug resistance, angiogenesis, tumorigenesis, water homeostasis, and altered viscoelasticity of extracellular matrix. The physicochemical properties of HA including its solubility and the availability of reactive functional groups facilitate chemical modifications on HA, which makes it a biocompatible material for use in tissue regeneration. HA-based biomaterials and bioscaffolds do not trigger allergies or inflammation and are hydrophilic which make them popular as injectable dermal and soft tissue fillers. They are manufactured in different forms including hydrogels, tubes, sheets and meshes. Here, we review the pathophysiological and pharmacological properties and the clinical uses of native and modified HA. The review highlights the therapeutic applications of HA-based bioscaffolds in organ-specific tissue engineering and regenerative medicine.


Asunto(s)
Materiales Biocompatibles , Ácido Hialurónico , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Andamios del Tejido/química
4.
Sci Rep ; 5: 15045, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26459859

RESUMEN

Thrombocytopenia is one of the most frequently observed secondary complications in many pathological conditions including liver diseases, where hyperbilirubinemia is very common. The present study sought to find the cause of thrombocytopenia in unconjugated hyperbilirubinemic conditions. Unconjugated bilirubin (UCB), an end-product of heme catabolism, is known to have pro-oxidative and cytotoxic effects at high serum concentration. We investigated the molecular mechanism underlying the pro-apoptotic effect of UCB on human platelets in vitro, and followed it up with studies in phenylhydrazine-induced hyperbilirubinemic rat model and hyperbilirubinemic human subjects. UCB is indeed found to significantly induce platelet apoptotic events including elevated endogenous reactive oxygen species generation, mitochondrial membrane depolarization, increased intracellular calcium levels, cardiolipin peroxidation and phosphatidylserine externalization (p < 0.001) as evident by FACS analysis. The immunoblots show the elevated levels of cytosolic cytochrome c and caspase activation in UCB-treated platelets. Further, UCB is found to induce mitochondrial ROS generation leading to p38 activation, followed by downstream activation of p53, ultimately resulting in altered expression of Bcl-2 and Bax proteins as evident from immunoblotting. All these parameters conclude that elevated unconjugated bilirubin causes thrombocytopenia by stimulating platelet apoptosis via mitochondrial ROS-induced p38 and p53 activation.


Asunto(s)
Apoptosis , Bilirrubina/metabolismo , Plaquetas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Bilirrubina/farmacología , Plaquetas/efectos de los fármacos , Calcio/metabolismo , Cardiolipinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Hiperbilirrubinemia/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Ratas , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
5.
Sci Rep ; 5: 11117, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26059174

RESUMEN

Medicinal plants are employed in the treatment of human ailments from time immemorial. Several studies have validated the use of medicinal plant products in arthritis treatment. Arthritis is a joint disorder affecting subchondral bone and cartilage. Degradation of cartilage is principally mediated by enzymes like matrix metalloproteinases (MMPs), hyaluronidases (HAase), aggrecanases and exoglycosidases. These enzymes act upon collagen, hyaluronan and aggrecan of cartilage respectively, which would in turn activate bone deteriorating enzymes like cathepsins and tartrate resistant acid phosphatases (TRAP). Besides, the incessant action of reactive oxygen species and the inflammatory mediators is reported to cause further damage by immunological activation. The present study demonstrated the anti-arthritic efficacy of tamarind seed extract (TSE). TSE exhibited cartilage and bone protecting nature by inhibiting the elevated activities of MMPs, HAase, exoglycosidases, cathepsins and TRAP. It also mitigated the augmented levels of inflammatory mediators like interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, IL-23 and cyclooxygenase-2. Further, TSE administration alleviated increased levels of ROS and hydroperoxides and sustained the endogenous antioxidant homeostasis by balancing altered levels of endogenous antioxidant markers. Overall, TSE was observed as a potent agent abrogating arthritis-mediated cartilage/bone degradation, inflammation and associated stress in vivo demanding further attention.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Huesos/efectos de los fármacos , Cartílago/efectos de los fármacos , Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Semillas/química , Tamarindus/embriología , Animales , Huesos/patología , Cartílago/patología , Mediadores de Inflamación/metabolismo , Extractos Vegetales/farmacología , Ratas , Ratas Wistar
6.
PLoS One ; 10(6): e0127558, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26083398

RESUMEN

Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 µM) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading to ΔΨm dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions.


Asunto(s)
Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Antimetabolitos Antineoplásicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , MAP Quinasa Quinasa 4/genética , Metotrexato/farmacología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Plaquetas/citología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Regulación de la Expresión Génica , Humanos , MAP Quinasa Quinasa 4/metabolismo , Potencial de la Membrana Mitocondrial , Metotrexato/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Fosforilación , Cultivo Primario de Células , Transducción de Señal , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína Letal Asociada a bcl/genética , Proteína Letal Asociada a bcl/metabolismo
7.
PLoS One ; 9(9): e107182, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25238069

RESUMEN

Thrombocytopenia is a serious issue connected with the pathogenesis of several human diseases including chronic inflammation, arthritis, Alzheimer's disease, cardiovascular diseases (CVDs) and other oxidative stress-associated pathologies. The indiscriminate use of antibiotics and other biological drugs are reported to result in thrombocytopenia, which is often neglected during the treatment regime. In addition, augmented oxidative stress induced by drugs and pathological conditions has also been shown to induce thrombocytopenia, which seems to be the most obvious consequence of elevated rate of platelet apoptosis. Thus, blocking oxidative stress-induced platelet apoptosis would be of prime importance in order to negotiate thrombocytopenia and associated human pathologies. The current study presents the synthesis and platelet protective nature of novel ibuprofen derivatives. The potent anti-oxidant ibuprofen derivative 4f was selected for the study and the platelet protective efficacy and platelet aggregation inhibitory property has been demonstrated. The compound 4f dose dependently mitigates the oxidative stress-induced platelet apoptosis in both platelet rich plasma and washed platelets. The platelet protective nature of compound 4f was determined by assessing various apoptotic markers such as ROS generation, cytosolic Ca2+ levels, PS externalization, cytochrome C translocation, Caspase activation, mitochondrial membrane depolarization, cytotoxicity, LDH leakage and tyrosine phosphorylation of cytosolic proteins. Furthermore, compound 4f dose dependently ameliorated agonist induced platelet aggregation. Therefore, compound 4f can be estimated as a potential candidate in the treatment regime of pathological disorders associated with platelet activation and apoptosis. In addition, compound 4f can be used as an auxiliary therapeutic agent in pathologies associated with thrombocytopenia.


Asunto(s)
Apoptosis/efectos de los fármacos , Plaquetas/efectos de los fármacos , Ibuprofeno/análogos & derivados , Agregación Plaquetaria/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Plaquetas/citología , Plaquetas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Ibuprofeno/química , Ibuprofeno/farmacología , Estrés Oxidativo/efectos de los fármacos
8.
J Thromb Thrombolysis ; 38(3): 321-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24705676

RESUMEN

Recent studies have reported the platelet proapoptotic propensity of plant-derived molecules such as, resveratrol, thymoquinone, andrographolide and gossypol. Meanwhile, there were also reports of phytochemicals such as cinnamtannin B1, which shows antiapoptotic effect towards platelets. Platelets are mainly involved in hemostasis, thrombosis and wound healing. However, altered platelet functions can have serious pathological outcomes that include cardiovascular diseases. Platelets are sensitive to external and internal stimuli including therapeutic and dietary components. The anuclear platelets do undergo apoptosis via mitochondrial pathway. However, exaggerated rate of platelet apoptosis could lead to thrombocytopenia and other bleeding disorders. The present study deals with ameliorative efficacy of crocin on sesamol-induced platelet apoptosis. The antiapoptotic property of crocin and the proapoptotic tendency of sesamol in platelets were previously demonstrated. Therefore, it was interesting to see how these two compounds would interact and wield their effects on human platelets. Crocin effectively inhibited sesamol-induced oxidative stress on platelets, which was evidenced by the measurement of endogenously generated reactive oxygen species, particularly hydrogen peroxide, and changes in thiol levels. Further, crocin abrogated sesamol-induced biochemical events of apoptosis in platelets, which include intracellular calcium mobilization, changes in mitochondrial membrane integrity, cytochrome c release, caspase activity and phosphatidylserine externalization. Even though sesamol has proapoptotic effects on platelets, its anti-platelet activity cannot be neglected. Thus, the study proposes that sesamol could be supplemented with crocin, an approach that could not only abolish the toxic effects of sesamol on platelets, but also enhance the quality of treatment due to their synergistic action.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Benzodioxoles/farmacología , Plaquetas/metabolismo , Carotenoides/farmacología , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Plaquetas/citología , Femenino , Humanos , Masculino
9.
Food Funct ; 5(3): 587-97, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24500568

RESUMEN

Although arthritis is primarily a joint disorder that mainly targets the articular cartilage and subchondral bone, several recent investigations have reported oxidative burst and vital organ damage that are being considered as secondary complications of arthritis. The continuous generation of free radicals like reactive oxygen and nitrogen species is considered as a key culprit in the initiation and propagation of oxidative damage. In addition, activation of T and B cells, macrophages, inflammatory mediators such as TNF-α, IL-1ß and IL-6 aggravates the oxidative damage of the vital organs, particularly the liver. The current piece of work demonstrates oxidative stress in the liver of arthritic rats and its amelioration by the procyanidin-rich tamarind seed extract (TSE). The arthritic liver homogenate, mitochondrial and cytosolic fractions were found with increased levels of oxidative stress markers including free radicals. As a consequence, depletion in the levels of glutathione, total thiols, glutathione peroxidase and reductase was evident. Furthermore, the activities of endogenous antioxidant enzymes like superoxide dismutase, catalase and glutathione-S-transferase were found to be significantly altered. The increased and decreased activity of transaminases respectively in serum and liver, along with histological observations, further confirms the liver damage. Unfortunately, the commonly used drugs like NSAIDs and DMARDs have failed to prevent oxidative damage, rather they were found to be the inducers themselves. Interestingly, TSE supplementation was found to significantly inhibit oxidative burst in the liver and maintain homeostasis. Thus, the study clearly demonstrates the protective efficacy of TSE against arthritis-associated oxidative liver damage, including mitochondrial oxidative burst and its associated secondary complications.


Asunto(s)
Antioxidantes/administración & dosificación , Artritis/tratamiento farmacológico , Hígado/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Semillas/química , Tamarindus/química , Animales , Artritis/metabolismo , Femenino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Hígado/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA