Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180346

RESUMEN

In this paper, we present the design and commissioning results of the upgraded collective Thomson scattering diagnostic at the Wendelstein 7-X stellarator. The diagnostic has a new radiometer designed to operate between the second and third harmonics of the electron cyclotron emission from the plasma at 171-177 GHz, where the emission background has a minimum and is of order 10-100 eV. It allows us to receive the scattered electromagnetic field with a significantly improved signal-to-noise ratio and extends the set of possible scattering geometries compared to the case of the original instrument operated at 140 GHz. The elements of the diagnostic are a narrowband notch filter and a frequency stabilized probing gyrotron that will allow measuring scattered radiation spectra very close to the probing frequency. Here, we characterize the microwave components applied to the radiometer and demonstrate the performance of the complete system that was achieved during the latest experimental campaign, OP2.1.

2.
Phys Rev Lett ; 117(11): 114801, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27661696

RESUMEN

A spatially extended planar 75 GHz free-electron maser with a hybrid two-mirror resonator consisting of two-dimensional upstream and traditional one-dimensional downstream Bragg reflectors and driven by two parallel-sheet electron beams 0.8 MeV/1 kA has been elaborated. For the highly oversized interaction space (cross section 45×2.5 vacuum wavelengths), the two-dimensional distributed feedback allowed realization of stable narrow-band generation that includes synchronization of emission from both electron beams. As a result, spatially coherent radiation with the output power of 30-50 MW and a pulse duration of ∼100 ns was obtained in each channel.

3.
J Phys Condens Matter ; 21(40): 405402, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21832412

RESUMEN

We investigated Se structures of different degrees of disorder ranging from a 5% up to a 95% degree of amorphization. Starting from a trigonal crystalline structure we applied different strategies to introduce disorder into the Se configurations by irradiating atoms from their crystalline equilibrium positions. According to the symmetry of the trigonal phase, we introduced three types of disorder, i.e. the first type where only atoms forming layers of complete helical chains are shifted from their original positions (the thickness of these layers is chosen to represent the chosen degree of amorphicity), the second type where only atoms in planes-of respective thicknesses-lying perpendicular to the chains are displaced and the third type where only randomly chosen atoms are shifted from their crystalline equilibrium positions. After a thermal treatment of these disordered starting configurations, we calculated structural and dynamic properties (i.e. pair-correlation function and vibrational spectrum) and compared the results to both the original crystalline data and results obtained from corresponding glass structures.

4.
Mol Biol Cell ; 19(10): 4492-505, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18701704

RESUMEN

Autophagy is a diverse family of processes that transport cytoplasm and organelles into the lysosome/vacuole lumen for degradation. During macroautophagy cargo is packaged in autophagosomes that fuse with the lysosome/vacuole. During microautophagy cargo is directly engulfed by the lysosome/vacuole membrane. Piecemeal microautophagy of the nucleus (PMN) occurs in Saccharomyces cerevisiae at nucleus-vacuole (NV) junctions and results in the pinching-off and release into the vacuole of nonessential portions of the nucleus. Previous studies concluded macroautophagy ATG genes are not absolutely required for PMN. Here we report using two biochemical assays that PMN is efficiently inhibited in atg mutant cells: PMN blebs are produced, but vesicles are rarely released into the vacuole lumen. Electron microscopy of arrested PMN structures in atg7, atg8, and atg9 mutant cells suggests that NV-junction-associated micronuclei may normally be released from the nucleus before their complete enclosure by the vacuole membrane. In this regard PMN is similar to the microautophagy of peroxisomes (micropexophagy), where the side of the peroxisome opposite the engulfing vacuole is capped by a structure called the "micropexophagy-specific membrane apparatus" (MIPA). The MIPA contains Atg proteins and facilitates terminal enclosure and fusion steps. PMN does not require the complete vacuole homotypic fusion genes. We conclude that a spectrum of ATG genes is required for the terminal vacuole enclosure and fusion stages of PMN.


Asunto(s)
Autofagia , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/fisiología , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Mutación , Membrana Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 056406, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18233775

RESUMEN

The first operation of a coaxial free-electron maser (FEM) based on two-dimensional (2D) distributed feedback has been recently observed. Analytical and numerical modeling, as well as measurements, of microwave radiation generated by a FEM with a cavity defined by coaxial structures with a 2D periodic perturbation on the inner surfaces of the outer conductor were carried out. The two-mirror cavity was formed with two 2D periodic structures separated by a central smooth section of coaxial waveguide. The FEM was driven by a large diameter (7 cm), high-current (500 A), annular electron beam with electron energy of 475 keV. Studies of the FEM operation have been conducted. It has been demonstrated that by tuning the amplitude of the undulator or guide magnetic field, modes associated with the different band gaps of the 2D structures were excited. The Ka-band FEM generated 15 MW of radiation with a 6% conversion efficiency, in good agreement with theory.

6.
FEBS Lett ; 508(1): 23-8, 2001 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-11707261

RESUMEN

We here report the identification of AUT10 as a novel gene required for both the cytoplasm to vacuole targeting of proaminopeptidase I and starvation-induced autophagy. aut10Delta cells are impaired in maturation of proaminopeptidase I under starvation and non-starvation conditions. A lack of Aut10p causes a defect in autophagy prior to vacuolar uptake of autophagosomes. Homozygous aut10Delta diploids do not sporulate. Vacuolar acidification indicated by accumulation of quinacrine is normal in aut10Delta cells and mature vacuolar proteinases are present. A biologically active Ha-tagged Aut10p, chromosomally expressed from its endogenous promoter, localizes in indirect immunofluorescence microscopy in the cytosol and on granulated structures, which appear clustered around the vacuolar membrane. This localization differs from known autophagy proteins.


Asunto(s)
Aminopeptidasas/metabolismo , Autofagia/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Vacuolas/metabolismo , Secuencia de Aminoácidos , Autofagia/genética , Proteínas Relacionadas con la Autofagia , Citoplasma/metabolismo , Genes Fúngicos , Genes Reporteros , Proteínas de la Membrana , Datos de Secuencia Molecular , Filogenia , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
7.
Gene ; 274(1-2): 151-6, 2001 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-11675007

RESUMEN

Autophagy is a starvation-induced transport pathway delivering parts of the cytosol into the lysosome (vacuole) for degradation. Autophagy significantly differs from other transport pathways by using double membrane layered transport intermediates. Based on the identification of autophagy genes in Saccharomyces cerevisiae, which served as a pacemaker for higher cells, our mechanistic knowledge of autophagy notably increased over the past few years. We here identify AUT8 as a novel gene essential for autophagy by screening a collection of approximately 5000 yeast deletion strains, each containing a defined deletion in an individual gene. This collection is a result of the world-wide Saccharomyces deletion project and covers the non-essential genes of the whole yeast genome. Homozygous aut8 Delta cells are impaired in maturation of proaminopeptidase I, and they fail to undergo the cell differentiation process of sporulation. The essential function of AUT8 for autophagy is further demonstrated by the lack of accumulation of autophagic vesicles in the vacuoles of aut8 Delta cells starved of nitrogen in the presence of the proteinase B inhibitor phenylmethylsulfonyl fluoride.


Asunto(s)
Autofagia/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Aminopeptidasas/metabolismo , Autofagia/fisiología , Precursores Enzimáticos/metabolismo , Eosina I Azulada/farmacología , Datos de Secuencia Molecular , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
J Bacteriol ; 183(20): 5942-55, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11566994

RESUMEN

Selective disintegration of membrane-enclosed autophagic bodies is a feature of eukaryotic cells not studied in detail. Using a Saccharomyces cerevisiae mutant defective in autophagic-body breakdown, we identified and characterized Aut5p, a glycosylated integral membrane protein. Site-directed mutagenesis demonstrated the relevance of its putative lipase active-site motif for autophagic-body breakdown. aut5Delta cells show reduced protein turnover during starvation and are defective in maturation of proaminopeptidase I. Most recently, by means of the latter phenotype, Aut5p was independently identified as Cvt17p. In this study we additionally checked for effects on vacuolar acidification and detected mature vacuolar proteases, both of which are prerequisites for autophagic-body lysis. Furthermore, biologically active hemagglutinin-tagged Aut5p (Aut5-Ha) localizes to the endoplasmic reticulum (nuclear envelope) and is targeted to the vacuolar lumen independent of autophagy. In pep4Delta cells immunogold electron microscopy located Aut5-Ha at approximately 50-nm-diameter intravacuolar vesicles. Characteristic missorting in vps class E and fab1Delta cells, which affects the multivesicular body (MVB) pathway, suggests vacuolar targeting of Aut5-Ha similar to that of the MVB pathway. In agreement with localization of Aut5-Ha at intravacuolar vesicles in pep4Delta cells and the lack of vacuolar Aut5-Ha in wild-type cells, our pulse-chase experiments clearly indicated that Aut5-Ha degradation with 50 to 70 min of half-life is dependent on vacuolar proteinase A.


Asunto(s)
Autofagia , Hidrolasas de Éster Carboxílico/metabolismo , Lipasa/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Vacuolas/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ácido Aspártico Endopeptidasas/metabolismo , Proteínas Relacionadas con la Autofagia , Sitios de Unión , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Genes Fúngicos , Glicoproteínas/metabolismo , Semivida , Lipasa/genética , Lipasa/aislamiento & purificación , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/aislamiento & purificación , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Homología de Secuencia de Aminoácido , Vacuolas/ultraestructura
9.
Mol Genet Genomics ; 266(4): 657-63, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11810238

RESUMEN

A P-element line ( P0997) of Drosophila melanogaster in which the P element disrupts the Drosophila homolog of the Saccharomyces cerevisiae gene APG4/AUT2 was identified during the course of screening for cut ( ct) modifiers. The yeast gene APG4/AUT2 encodes a cysteine endoprotease directed against Apg8/Aut7 and is necessary for autophagy. The P0997 mutation enhances the wing margin loss associated with ct mutations, and also modifies the wing and eye phenotypes of Notch (N), Serrate (Ser), Delta (Dl), Hairless (H), deltex (dx), vestigial (vg) and strawberry notch (sno) mutants. These results therefore suggest an unexpected link between autophagy and the Notch signaling pathway.


Asunto(s)
Cisteína Endopeptidasas/genética , Drosophila/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Transducción de Señal/genética , Secuencia de Aminoácidos , Animales , Proteínas Relacionadas con la Autofagia , Proteínas de Drosophila , Genes de Insecto , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Fenotipo , Receptores Notch , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Alas de Animales/crecimiento & desarrollo
10.
J Cell Sci ; 113 ( Pt 22): 4025-33, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11058089

RESUMEN

Autophagy is a degradative transport pathway that delivers cytosolic proteins to the lysosome (vacuole). Cytosolic proteins appear inside the vacuole enclosed in autophagic vesicles. These autophagic vesicles are broken down in the vacuole together with their cytosolic content. The breakdown of vesicular transport intermediates is a unique feature of autophagy. We here identify Aut4p, a component essential for the disintegration of autophagic vesicles, inside the vacuole of S. cerevisiae cells. Aut4p is a putative integral membrane protein with limited homologies to permeases. Chromosomal deletion of AUT4 has no obvious influence on growth, vacuolar acidification and the activities of vacuolar proteinases. Like proteinase B-deficient cells, aut4-deleted cells show a partial reduction in total protein breakdown during nitrogen starvation. A biologically active fusion protein of Aut4p and the green fluorescent protein is visualized at the vacuolar membrane and in punctate structures attached to the vacuole.


Asunto(s)
Autofagia , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Vacuolas/fisiología , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia , Secuencia de Bases , Cromosomas Fúngicos , Citosol/metabolismo , Endopeptidasas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Eliminación de Gen , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vacuolas/ultraestructura
11.
EMBO J ; 19(10): 2161-7, 2000 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-10811607

RESUMEN

The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is synthesized when cells of the yeast Saccharomyces cerevisiae are grown on a non-fermentable carbon source. After shifting the cells to glucose-containing medium, in a process called catabolite degradation, FBPase is selectively and rapidly broken down. We have isolated gid mutants, which are defective in this glucose-induced degradation process. When complementing the defect in catabolite degradation of FBPase in gid3-1 mutant cells with a yeast genomic library, we identified the GID3 gene and found it to be identical to UBC8 encoding the ubiquitin-conjugating enzyme Ubc8p. The in vivo function of Ubc8p (Gid3p) has remained a mystery so far. Here we demonstrate the involvement of Ubc8p in the glucose-induced ubiquitylation of FBPase as a prerequisite for catabolite degradation of the enzyme via the proteasome. Like FBPase, Ubc8p is found in the cytoplasmic fraction of the cell. We demonstrate cytoplasmic degradation of FBPase.


Asunto(s)
Fructosa-Bifosfatasa/metabolismo , Ligasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras , Ubiquitinas/metabolismo , Biodegradación Ambiental , Proteínas Fúngicas/metabolismo
12.
J Bacteriol ; 182(8): 2125-33, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10735854

RESUMEN

In growing cells of the yeast Saccharomyces cerevisiae, proaminopeptidase I reaches the vacuole via the selective cytoplasm-to-vacuole targeting (cvt) pathway. During nutrient limitation, autophagy is also responsible for the transport of proaminopeptidase I. These two nonclassical protein transport pathways to the vacuole are distinct in their characteristics but in large part use identical components. We expanded our initial screen for aut(-) mutants and isolated aut9-1 cells, which show a defect in both pathways, the vacuolar targeting of proaminopeptidase I and autophagy. By complementation of the sporulation defect of homocygous diploid aut9-1 mutant cells with a genomic library, in this study we identified and characterized the AUT9 gene, which is allelic with CVT7. aut9-deficient cells have no obvious defects in growth on rich media, vacuolar biogenesis, and acidification, but like other mutant cells with a defect in autophagy, they exhibit a reduced survival rate and reduced total protein turnover during starvation. Aut9p is the first putative integral membrane protein essential for autophagy. A biologically active green fluorescent protein-Aut9 fusion protein was visualized at punctate structures in the cytosol of growing cells.


Asunto(s)
Autofagia/genética , Citoplasma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Secuencia de Aminoácidos , Aminopeptidasas/metabolismo , Proteínas Relacionadas con la Autofagia , Transporte Biológico Activo/genética , Medios de Cultivo , Citoplasma/ultraestructura , Eliminación de Gen , Prueba de Complementación Genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Precursores de Proteínas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/ultraestructura , Homología de Secuencia de Aminoácido , Vacuolas/ultraestructura
13.
Microsc Res Tech ; 51(6): 563-72, 2000 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11169858

RESUMEN

The vacuole of the yeast Saccharomyces cerevisiae plays an important role in pH- and ion-homeostasis, and is used as a storage compartment for ions. Another important function of the vacuole, especially during nutrient limitation, is the bulk degradation of proteins and even whole organelles. To carry these proteins into the vacuolar lumen, sophisticated transport pathways have evolved. In this review, starvation-induced autophagy and its relationship to the specific cytoplasm to vacuole targeting (cvt-) pathway of proaminopeptidase I is discussed. A further topic is the specific vacuolar uptake and degradation of peroxisomes in Pichia pastoris cells via micro- and macroautophagy.


Asunto(s)
Autofagia/fisiología , Saccharomyces cerevisiae/fisiología , Vacuolas/fisiología , Vacuolas/ultraestructura , Microscopía Electrónica/métodos , Saccharomyces cerevisiae/ultraestructura
14.
J Bacteriol ; 181(6): 1963-7, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10074098

RESUMEN

We have identified LB-AUT7, a gene differentially expressed 6 h after ectomycorrhizal interaction between Laccaria bicolor and Pinus resinosa. LB-Aut7p can functionally complement its Saccharomyces cerevisiae homolog, which is involved in the attachment of autophagosomes to microtubules. Our findings suggest the induction of an autophagocytosis-like vesicular transport process during ectomycorrhizal interaction.


Asunto(s)
Agaricales/genética , Agaricales/fisiología , Autofagia/genética , Genes Fúngicos , Simbiosis/genética , Secuencia de Aminoácidos , Autofagia/fisiología , ADN Complementario/genética , ADN de Hongos/genética , Prueba de Complementación Genética , Datos de Secuencia Molecular , ARN de Hongos/genética , ARN Mensajero/genética , Homología de Secuencia de Aminoácido , Simbiosis/fisiología
15.
J Biol Chem ; 273(39): 25000-5, 1998 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-9737955

RESUMEN

Addition of glucose to cells of the yeast Saccharomyces cerevisiae growing on a non-fermentable carbon source leads to selective and rapid degradation of fructose-1,6-bisphosphatase. This so called catabolite inactivation of the enzyme is brought about by the ubiquitin-proteasome system. To identify additional components of the catabolite inactivation machinery, we isolated three mutant strains, gid1, gid2, and gid3, defective in glucose-induced degradation of fructose-1,6-bisphospha-tase. All mutant strains show in addition a defect in catabolite inactivation of three other gluconeogenic enzymes: cytosolic malate dehydrogenase, isocitrate lyase, and phosphoenolpyruvate carboxykinase. These findings indicate a common mechanism for the inactivation of all four enzymes. The mutants were also impaired in degradation of short-lived N-end rule substrates, which are degraded via the ubiquitin-proteasome system. Site-directed mutagenesis of the amino-terminal proline residue yielded fructose-1,6-bisphosphatase forms that were no longer degraded via the ubiquitin-proteasome pathway. All amino termini other than proline made fructose-1,6-bisphosphatase inaccessible to degradation. However, the exchange of the amino-terminal proline had no effect on the phosphorylation of the mutated enzyme. Our findings suggest an essential function of the amino-terminal proline residue for the degradation process of fructose-1,6-bisphosphatase. Phosphorylation of the enzyme was not necessary for degradation to occur.


Asunto(s)
Fructosa-Bifosfatasa/metabolismo , Péptido Hidrolasas/metabolismo , Prolina/metabolismo , Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Biopolímeros/metabolismo , Catálisis , Cartilla de ADN , Electroforesis en Gel de Campo Pulsado , Fructosa-Bifosfatasa/genética , Hidrólisis , Isocitratoliasa/antagonistas & inhibidores , Cinética , Malato Deshidrogenasa/antagonistas & inhibidores , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfoenolpiruvato Carboxiquinasa (ATP)/antagonistas & inhibidores , Fosforilación , Poliubiquitina , Prolina/genética , Especificidad por Sustrato , Ubiquitinas/metabolismo
16.
EMBO J ; 17(13): 3597-607, 1998 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-9649430

RESUMEN

AUT2 and AUT7, two novel genes essential for autophagocytosis in the yeast Saccharomyces cerevisiae were isolated. AUT7 was identified as a low copy suppressor of autophagic defects in aut2-1 cells. Aut7p is a homologue of the rat microtubule-associated protein (MAP) light chain 3 (LC3). Aut2p and Aut7p interact physically. Aut7p is attached to microtubules via Aut2p, which interacts with tubulins Tub1p and Tub2p. aut2- and aut7-deleted cells are unable to deliver autophagic vesicles and the precursor of aminopeptidase I to the vacuole. Double membrane-layered autophagosome-like vesicles accumulate in the cytoplasm of these cells. Our findings suggest that microtubules and an attached protein complex of Aut2p and Aut7p are involved in the delivery of autophagic vesicles to the vacuole.


Asunto(s)
Autofagia/fisiología , Cisteína Endopeptidasas , Proteínas Fúngicas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Animales , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Secuencia de Bases , ADN de Hongos , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Fagosomas , Fenotipo , Ratas , Saccharomyces cerevisiae/crecimiento & desarrollo , Homología de Secuencia de Aminoácido , Vacuolas/metabolismo
17.
J Bacteriol ; 179(12): 3875-83, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9190802

RESUMEN

Autophagocytosis is a starvation-induced process, carrying proteins destined for degradation to the lysosome. In the yeast Saccharomyces cerevisiae, the autophagic process is visualized by the appearance of autophagic vesicles in the vacuoles of proteinase yscB-deficient strains during starvation. aut3-1 mutant cells which exhibit a block in the autophagic process have been isolated previously. By using the drastically reduced sporulation frequency of homozygous aut3-1 diploid cells, the AUT3 gene was cloned by complementation. The Aut3 protein consists of 897 amino acids. The amino-terminal part of the protein shows significant homologies to serine/threonine kinases. aut3 null mutant cells are fully viable on rich media but show a reduced survival rate upon starvation. They are unable to accumulate autophagic vesicles in the vacuole during starvation. Starvation-induced vacuolar protein breakdown is almost completely impaired in aut3-deficient cells. Vacuolar morphology and acidification are not influenced in aut3-deficient cells. Also, secretion of invertase, endocytic uptake of Lucifer Yellow, and vacuolar protein sorting appear wild type like in aut3-deficient cells, suggesting autophagocytosis as a novel route for the transport of proteins from the cytosol to the vacuole. By using a fusion of Aut3p with green-fluorescent protein, Aut3p was localized to the cytosol.


Asunto(s)
Autofagia , Genes Fúngicos , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Datos de Secuencia Molecular , Saccharomyces cerevisiae/fisiología
18.
J Bacteriol ; 179(4): 1068-76, 1997 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9023185

RESUMEN

Autophagocytosis is a starvation-induced process responsible for transport of cytoplasmic proteins to the vacuole. In Saccharomyces cerevisiae, autophagy is characterized by the phenotypic appearance of autophagic vesicles inside the vacuole of strains deficient in proteinase yscB. The AUT1 gene, essential for autophagy, was isolated by complementation of the sporulation deficiency of a diploid aut1-1 mutant strain by a yeast genomic library and characterized. AUT1 is located on the right arm of chromosome XIV, 10 kb from the centromere, and encodes a protein of 310 amino acids, with an estimated molecular weight of 36 kDa. Cells carrying a chromosomal deletion of AUT1 are defective in the starvation-induced bulk flow transport of cytoplasmic proteins to the vacuole. aut1 null mutant strains are completely viable but show decreased survival rates during starvation. Homozygous delta aut1 diploid cells fail to sporulate. The selective cytoplasm-to-vacuole transport of aminopeptidase I is blocked in logarithmically growing and in starved delta autl cells. Deletion of the AUT1 gene had no obvious influence on secretion, fluid phase endocytosis, or vacuolar protein sorting. This supports the idea of autophagocytosis as being a novel route transporting proteins from the cytoplasm to the vacuole.


Asunto(s)
Autofagia/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Secuencia de Aminoácidos , Aminopeptidasas/metabolismo , Proteínas Relacionadas con la Autofagia , Secuencia de Bases , Transporte Biológico , Cromosomas Fúngicos , Citoplasma/enzimología , Citoplasma/metabolismo , Endocitosis , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Glicósido Hidrolasas/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Mutación Puntual , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Eliminación de Secuencia , Enzimas Ubiquitina-Conjugadoras , Vacuolas/enzimología , beta-Fructofuranosidasa
19.
J Biol Chem ; 271(30): 17621-4, 1996 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-8663607

RESUMEN

We have explored the phenotypic and genetic overlap between autophagocytosis and cytoplasm to vacuole targeting in the yeast Saccharomyces cerevisiae. Complementation analysis was performed with mutants in each of these groups (aut and cvt, respectively), and three complementation groups were found to overlap. Also, most of the unique aut mutants accumulated precursor aminopeptidase I in the cytoplasm, while maintaining wild type kinetics and maturation of proteins targeted to the vacuole via the secretory pathway. The majority of the non-overlapping cvt mutants were found to be at least partially defective in autophagy. Some mutants in each group, however, appear to be only marginally affected in the other phenotype, implying that these pathways only partially overlap. We propose that import of aminopeptidase I into the vacuole shares a number of components required for bulk autophagocytosis, but is made specific, saturable, and constitutive by the presence of a receptor or other interacting protein(s).


Asunto(s)
Aminopeptidasas/metabolismo , Autofagia/genética , Citoplasma/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Secuencia de Aminoácidos , Transporte Biológico , Compartimento Celular , Citoplasma/enzimología , Datos de Secuencia Molecular , Mutación , Fenotipo , Vacuolas/enzimología
20.
J Biol Chem ; 270(44): 26446-50, 1995 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-7592860

RESUMEN

Catabolite inactivation of fructose-1,6-bisphosphatase (FBPase), a key enzyme in gluconeogenesis, is due to phosphorylation and subsequent degradation in the yeast Saccharomyces cerevisiae. The degradation process of the enzyme had been shown to depend on the action of the proteasome. Here we report that components of the ubiquitin pathway target FBPase to proteolysis. Upon glucose addition to yeast cells cultured on nonfermentable carbon sources FBPase is ubiquitinated in vivo. A multiubiquitin chain containing isopeptide linkages at Lys48 of ubiquitin is attached to FBPase. Formation of a multiubiquitin chain is a prerequisite for the degradation of FBPase. Catabolite degradation of FBPase is dependent on the ubiquitin-conjugating enzymes Ubc1, Ubc4, and Ubc5. The 26 S proteasome is involved in the degradation process.


Asunto(s)
Fructosa-Bifosfatasa/antagonistas & inhibidores , Ligasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Enzimas Ubiquitina-Conjugadoras , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Cisteína Endopeptidasas/metabolismo , Retroalimentación , Expresión Génica , Genes Fúngicos , Glucosa/farmacología , Cinética , Ligasas/biosíntesis , Lisina , Complejos Multienzimáticos/metabolismo , Complejo de la Endopetidasa Proteasomal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA