Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 1(4): 306-314, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20495672

RESUMEN

Fragile X syndrome (FXS), an inherited disorder characterized by mental retardation and autismlike behaviors, is caused by the failure to transcribe the gene for fragile X mental retardation protein (FMRP), a translational regulator and transporter of select mRNAs. FXS model mice (Fmr1 KO mice) exhibit impaired neuropeptide release. Release of biogenic amines does not differ between wild-type (WT) and Fmr1 KO mice. Rab3A, an mRNA cargo of FMRP involved in the recruitment of vesicles, is decreased by ∼50% in synaptoneurosomes of Fmr1 KO mice; however, the number of dense-core vesicles (DCVs) does not differ between WT and Fmr1 KO mice. Therefore, deficits associated with FXS may reflect this aberrant vesicle release, specifically involving docking and fusion of peptidergic DCVs, and may lead to defective maturation/maintenance of synaptic connections.

2.
Endocrinology ; 151(4): 1773-83, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20181796

RESUMEN

The real-time electrochemical detection of catecholamine secretion from murine adrenal slices using fast-scan cyclic voltammetry (FSCV) and amperometry at carbon fiber microelectrodes is described. Bright-field and immunofluorescent microscopy supported that chromaffin cells in the adrenal medulla are organized into clusters and positively stain for tyrosine hydroxylase confirming that they are catecholaminergic. Spontaneous exocytotic catecholamine events were observed inside chromaffin cell clusters with both FSCV and amperometry and were modulated by the nicotinic acetylcholine receptor antagonist hexamethonium and low extracellular calcium. Reintroduction of extracellular calcium and pressure ejection of acetylcholine caused the frequency of spikes to increase back to predrug levels. Electrical stimulation caused the synchronous secretion from multiple cells within the gland, which were modulated by nicotinic acetylcholine receptors but not muscarinic receptors or gap junctions. Furthermore, electrically stimulated release was abolished with perfusion of low extracellular calcium or tetrodotoxin, indicating that the release requires electrical excitability. An extended waveform was used to study the spontaneous and stimulated release events to determine their chemical content by FSCV. Consistent with total content analysis and immunohistochemical studies, about two thirds of the cells studied spontaneously secreted epinephrine, whereas one third secreted norepinephrine. Whereas adrenergic sites contained mostly epinephrine during electrical stimulation, noradrenergic sites contained a mixture of the catecholamines showing the heterogeneity of the adrenal medulla.


Asunto(s)
Glándulas Suprarrenales/fisiología , Catecolaminas/metabolismo , Técnicas Electroquímicas , Animales , Células Cultivadas , Células Cromafines/fisiología , Estimulación Eléctrica , Exocitosis/fisiología , Femenino , Inmunohistoquímica , Ratones , Microscopía Confocal , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA