Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 14(6): 2283-8, 2006 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19503565

RESUMEN

Phasematch curves as well as sensitivity to angular and wavelength misalignment for generation of second-harmonic of 785 nm and 810 nm in Bi(3)BO(6) crystal was calculated. Measurements were done for intra-cavity CW SHG in a Ti:Sapphire laser. The BiBO crystal was found to be excellent for this application. Temperature dependance was uncritical for both crystals, while power stability was good. Maximum blue output was 53 mW at 392 nm and 100 mW at 405 nm; corresponding to pump-to-blue optical conversion efficiencies of 0.96% and 1.82% respectively.

2.
Opt Lett ; 29(14): 1623-5, 2004 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15309839

RESUMEN

A photonic crystal waveguide splitter that exhibits ultralow-loss 3-dB splitting for TE-polarized light is fabricated in silicon-on-insulator material by use of deep UV lithography. The high performance is achieved by use of a Y junction, which is designed to ensure single-mode operation, and low-loss 60 degrees bends. Zero-loss 3-dB output is experimentally obtained in the range 1560-1585 nm. Results from three-dimensional finite-difference time-domain modeling with no adjustable parameters are found to be in excellent agreement with the experimental results.

3.
Opt Express ; 12(2): 234-48, 2004 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-19471530

RESUMEN

Planar photonic crystal waveguide structures have been modelled using the finite-difference-time-domain method and perfectly matched layers have been employed as boundary conditions. Comprehensive numerical calculations have been performed and compared to experimentally obtained transmission spectra for various photonic crystal waveguides. It is found that within the experimental fabrication tolerances the calculations correctly predict the measured transmission levels and other major transmission features.

4.
Opt Express ; 11(15): 1757-62, 2003 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19466056

RESUMEN

We have investigated the properties of TM polarized light in planar photonic crystal waveguide structures, which exhibit photonic band gaps for TE polarized light. Straight and bent photonic crystal waveguides and couplers have been fabricated in silicon-on-insulator material and modelled using a 3D finite-difference-time-domain method. The simulated spectra are in excellent agreement with the experimental results, which show a propagation loss as low as 2.5+/-4 dB/mm around 1525 nm and bend losses at 2.9+/-0.2 dB for TM polarized light. We demonstrate a high coupling for TM polarized light in a simple photonic crystal coupler with a size of ~ 20 m x 20 m. These promising features may open for the realization of ultra-compact photonic crystal components, which are easily integrated in optical communication networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA