Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(2): e0247318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33617585

RESUMEN

Dams and reservoirs alter natural water flow regimes with adverse effects on natural ecosystems. Quantifying and reducing these effects are important as global demands for energy and water, and the number of dams and reservoir, increase. However, costs and logistic constraints typically preclude experimental assessment of reservoir effects on the environment. We developed a stochastic individual-based model (IBM), parameterized using empirical data, to estimate the annual productivity of yellow warblers that breed in riparian habitat within the footprint of the Arrow Lakes Reservoir in British Columbia, Canada. The IBM incorporated information on breeding phenology, nest site selection, brood parasitism, daily nest survival, re-nesting probabilities and post-fledging survival. We used the IBM to estimate the effect of four different water management scenarios on annual productivity. We found that the IBM accurately estimated average nest success (0.39 ± 0.10 SD), the proportion of females that produced at least one fledgling during a breeding season (0.56 ± 0.11), and annual fledging success (2.06 ± 0.43) under current conditions. The IBM estimated that reservoir operations currently reduce the annual productivity of this population by 37%, from an average of 1.62 to 1.06 independent young/female. Delaying when reservoir water levels reach 435m asl (the minimum elevation occupied by yellow warblers) by approximately 2 weeks was predicted to increase annual productivity to 1.44 independent young/female. The standardized effect on annual productivity of reducing the maximum elevation of the reservoir so that yellow warbler habitat is not inundated (Cohen's d = 1.52) or delaying when water is stored (Cohen's d = 0.83) was primarily driven by inundation effects on post-fledging survival. Reservoir operation effects on breeding birds will be species specific, but this IBM can easily be modified to allow the environmental impacts on the entire breeding bird community to be incorporated into water management decisions.


Asunto(s)
Reproducción/fisiología , Pájaros Cantores/fisiología , Agua/química , Animales , Colombia Británica , Ecosistema , Ambiente , Femenino , Masculino , Comportamiento de Nidificación/fisiología , Estaciones del Año
2.
Glob Chang Biol ; 25(5): 1642-1652, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30773758

RESUMEN

Despite the profound impacts of drought on terrestrial productivity in coastal arid ecosystems, only a few studies have addressed how drought can influence ecological cascades across ecosystem boundaries. In this study, we examine the consequences of rainfall pulses and drought that subsequently impact the breeding success of a threatened nocturnal seabird, the Scripps's Murrelet (Synthliboramphus scrippsi). On an island off the coast of southern California, the main cause of reduced nest success for one of their largest breeding colonies is egg predation by an endemic deer mouse (Peromyscus maniculatus elusus). Mice on the island have an opportunistic diet of primarily terrestrial sources, but drastic declines in terrestrial productivity from drought might be expected to increase their reliance on marine resources, including murrelet eggs. We compiled data on terrestrial and marine productivity between 1983 and 2013 to determine how conditions in these ecosystems influence murrelet nest success. We found that the severity of drought had the strongest negative impact on murrelet nest success. We calculated that the reduction in fecundity during drought years due to increased egg predation by mice was substantial enough to produce a declining population growth rate. Nest success was much higher under normal or high rainfall conditions, depending on whether oceanic conditions were favorable to murrelets. Therefore, the more frequent and severe drought that is projected for this region could lead to an increased risk of murrelet population decline on this island. Our study highlights the need for understanding how species interactions will change through the effects of increasing drought and altered rainfall regimes under global change.


Asunto(s)
Charadriiformes/fisiología , Sequías , Ecosistema , Fertilidad/fisiología , Conducta Predatoria , Animales , California , Islas del Pacífico , Peromyscus/fisiología
3.
Proc Biol Sci ; 285(1889)2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355706

RESUMEN

Most approaches for assessing species vulnerability to climate change have focused on direct impacts via abiotic changes rather than indirect impacts mediated by changes in species interactions. Changes in rainfall regimes may influence species interactions from the bottom-up by increasing primary productivity in arid environments, but subsequently lead to less predictable top-down effects. Our study demonstrates how the effects of an EL Niño/Southern Oscillation (ENSO)-driven rainfall pulse ricochets along a chain of interactions between marine and terrestrial food webs, leading to enhanced predation of a vulnerable marine predator on its island breeding grounds. On Santa Barbara Island, barn owls (Tyto alba) are the main predator of a nocturnal seabird, the Scripps's murrelet (Synthliboramphus scrippsi), as well as an endemic deer mouse. We followed the links between rainfall, normalized difference vegetation index and subsequent peaks in mouse and owl abundance. After the mouse population declined steeply, there was approximately 15-fold increase in the number of murrelets killed by owls. We also simulated these dynamics with a mathematical model and demonstrate that bottom-up resource pulses can lead to subsequent declines in alternative prey. Our study highlights the need for understanding how species interactions will change with shifting rainfall patterns through the effects of ENSO under global change.


Asunto(s)
Charadriiformes , Cambio Climático , El Niño Oscilación del Sur , Cadena Alimentaria , Peromyscus , Estrigiformes/fisiología , Animales , California , Conducta Predatoria , Lluvia
4.
Ecology ; 97(12): 3530-3537, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27912006

RESUMEN

Apex predators can suppress the foraging activity of mesopredators, which may then result in cascading benefits for the prey of those mesopredators. We studied the interactions between a top predator, the Barn Owl (Tyto alba), and their primary prey, an island endemic deer mouse (Peromyscus maniculatus elusus), which in turn consumes the eggs of seabirds nesting on Santa Barbara Island in California. Scripps's Murrelets (Synthliboramphus scrippsi), a threatened nocturnal seabird, arrive annually to breed on this island, and whose first egg is particularly vulnerable to predation by mice. We took advantage of naturally occurring extreme variations in the density of mice and owls on the island over 3 years and predicted that (1) mouse foraging would decrease with increasing predation risk from owls and moonlight and (2) these decreases in foraging would reduce predation on murrelet eggs. We measured the giving up densities of mice with experimental foraging stations and found that mice were sensitive to predation risk and foraged less when owls were more abundant and less during the full moon compared to the new moon. We also monitored the fates of 151 murrelet eggs, and found that murrelet egg predation declined as owl abundance increased, and was lower during the full moon compared to the new moon. Moreover, high owl abundance suppressed egg predation even when mice were extremely abundant. We conclude that there is a behaviorally mediated cascade such that owls on the island had a positive indirect effect on murrelet egg survival. Our study adds to the wider recognition of the strength of risk effects to structure food webs, as well as highlighting the complex ways that marine and terrestrial food webs can intersect.


Asunto(s)
Anseriformes/fisiología , Óvulo/fisiología , Peromyscus/fisiología , Conducta Predatoria/fisiología , Estrigiformes/fisiología , Animales , Islas , Comportamiento de Nidificación , Dinámica Poblacional , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA