RESUMEN
The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhizobium caulinodans, and Rhizobium loti, is involved in the addition of a fucosyl residue to the reducing N-acetylglucosamine residue of lipochitin oligosaccharide (LCO) signal molecules. Using an Escherichia coli strain that produces large quantities of the NodZ protein of B. japonicum, we have purified the NodZ protein to homogeneity. The purified NodZ protein appears to be active in an in vitro transfucosylation assay in which GDP-beta-fucose and LCOs or chitin oligosaccharides are used as substrates. The products of the in vitro reaction using chitin oligosaccharides as substrate were studied by using mass spectrometry, linkage analysis, and composition analysis. The data show that one fucose residue is added to C6 of the reducing-terminal N-acetylglucosamine residue. The substrate specificity of NodZ protein was analyzed in further detail, using radiolabeled GDP-beta-fucose as the donor. The results show that chitin oligosaccharides are much better substrates than LCOs, suggesting that in Rhizobium NodZ fucosylates chitin oligosaccharides prior to their acylation. The free glycan core pentasaccharides of N-linked glycoproteins are also substrates for NodZ. Therefore, the NodZ enzyme seems to have an activity equivalent to that of the enzyme involved in the addition of the C6-linked fucosyl substituent in the glycan core of N-linked glycoproteins in eukaryotes. Oligosaccharides that contain only one N-acetylglucosamine at the reducing terminus are also substrates for NodZ, although in this case very high concentrations of such oligosaccharides are needed. An example is the leukocyte antigen Lewis-X, which can be converted by NodZ to a novel fucosylated derivative that could be used for binding studies with E-selectin.
Asunto(s)
Proteínas Bacterianas/metabolismo , Quitina/metabolismo , Fucosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Acetilglucosamina/metabolismo , Proteínas Bacterianas/genética , Secuencia de Carbohidratos , Fucosiltransferasas/genética , Guanosina Difosfato Fucosa/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes/metabolismo , Especificidad por SustratoRESUMEN
Lipophosphoglycan (LPG) was isolated from the culture supernatant of Leishmania mexicana promastigotes and its structure elucidated by a combination of 1H NMR, fast atom bombardment mass spectrometry, methylation analysis, and chemical and enzymatic modifications. It consists of the repeating phosphorylated oligosaccharides PO4-6Gal beta 1-4Man alpha 1- and PO4-6[Glc beta 1-3]Gal beta 1-4Man alpha 1-, which are linked together in linear chains by phosphodiester linkages. Each chain of repeat units is linked to a phosphosaccharide core with the structure PO4-6Gal alpha 1-6Gal alpha 1-3Galf beta 1- 3[Glc alpha 1-PO4-6]Man alpha 1-3Man alpha 1-4GlcNH2 alpha 1-6 myo-inositol, where the myo-inositol residue forms the head group of a lyso-alkylphosphatidylinositol moiety. The nonreducing terminus of the repeat chains appear to be capped with the neutral oligosaccharides Man alpha 1-2Man, Man alpha 1-2Man alpha 1-2Man, or Man alpha 1-2[Gal beta 1-4]Man. Cellular LPG, isolated from promastigotes, has a very similar structure to the culture supernatant LPG. However, it differs from culture supernatant LPG in the average number of phosphorylated oligosaccharide repeat units (20 versus 28) and in alkyl chain composition. Although culture supernatant LPG contained predominantly C24:0 alkyl chains, cellular LPG contained approximately equal amounts of C24:0 and C26:0 alkyl chains. It is suggested that culture supernatant LPG is passively shed from promastigotes and that it may contribute significantly, but not exclusively, to the "excreted factor" used for serotyping Leishmania spp. Comparison of L. mexicana LPG with the LPGs of Leishmania major and Leishmania donovani indicate that these molecules are highly conserved but that species-specific differences occur in the phosphorylated oligosaccharide repeat branches and in the relative abundance of the neutral cap structures.
Asunto(s)
Glicoesfingolípidos/metabolismo , Leishmania mexicana/metabolismo , Animales , Western Blotting , Secuencia de Carbohidratos , Cromatografía en Capa Delgada , Medios de Cultivo , Electroforesis en Gel de Poliacrilamida , Hidrólisis , Espectroscopía de Resonancia Magnética , Metilación , Datos de Secuencia Molecular , Espectrometría de Masa Bombardeada por Átomos VelocesRESUMEN
The lipopeptidophosphoglycan is the major cell surface glycoconjugate of the epimastigote forms of the parasitic protozoan Trypanosoma cruzi. A detailed partial structure for this molecule has been reported (Previato, J. O., Gorin, P. A. J., Mazurek, M., Xavier, M. T., Fournet, B., Wieruszesk, J. M., and Mendonca-Previato, L. (1990) J. Biol. Chem. 265, 2518-2526). In this study, we complete the primary structure assignments and describe the microheterogeneity found in the lipopeptidophosphoglycan glycan, using a combination of 1H and 31P NMR, fast atom bombardment mass spectrometry, methylation linkage analysis, and exoglycosidase sequencing. The lipopeptidophosphoglycan is a glycosylated inositol-phosphoceramide with striking homology to glycosylphosphatidylinositol membrane anchors found attached to a wide variety of plasma membrane proteins throughout the eukaryotes.