RESUMEN
In contrast to its productive coastal margins, the open-ocean Gulf of Mexico (GoM) is notable for highly stratified surface waters with extremely low nutrient and chlorophyll concentrations. Field campaigns in 2017 and 2018 identified low rates of turbulent mixing, which combined with oligotrophic nutrient conditions, give very low estimates for diffusive flux of nitrate into the euphotic zone (< 1 µmol N m-2 d-1). Estimates of local N2-fixation are similarly low. In comparison, measured export rates of sinking particulate organic nitrogen (PON) from the euphotic zone are 2 - 3 orders of magnitude higher (i.e. 462 - 1144 µmol N m-2 d-1). We reconcile these disparate findings with regional scale dynamics inferred independently from remote-sensing products and a regional biogeochemical model and find that laterally-sourced organic matter is sufficient to support >90% of open-ocean nitrogen export in the GoM. Results show that lateral transport needs to be closely considered in studies of biogeochemical balances, particularly for basins enclosed by productive coasts.
Asunto(s)
Nitrógeno/análisis , Agua de Mar/química , Carbono/análisis , Difusión , Golfo de México , Nitratos/análisis , Fijación del Nitrógeno , Movimientos del AguaRESUMEN
Global atmospheric ethanol budget models include large uncertainties in the magnitude of ethanol emission sources and sinks. To apply stable isotope techniques to constrain ethanol emission sources, a headspace solid phase microextraction gas chromatograph-combustion-isotope ratio mass spectrometry method (HS-SPME-GC-C-IRMS) was developed to measure the carbon isotopic composition of aqueous phase ethanol at natural abundance levels (1-30 µM) with a precision of 0.4. The method was applied to determine the carbon isotope signatures (δ13C) of vehicle ethanol emission sources in Brazil (-12.8 ± 2.4) and the US (-9.8 ± 2.5), and to measure the carbon isotope composition of ethanol in wet deposition (-22.6 to -12.7). A two end-member isotope mixing model was developed using anthropogenic and biogenic end members and fractionation scenarios to estimate ethanol source contributions to wet deposition collected in Brazil and US. Mixing model results indicate anthropogenic sources contribute two and a half to four times more ethanol to the atmosphere than previously predicted in modeled global ethanol inventories. As established and developing countries continue to rapidly increase ethanol fuel consumption and subsequent emissions, understanding the magnitude of all ethanol sources and sinks will be essential for modeling future atmospheric chemistry and air quality impacts.