Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 13(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467623

RESUMEN

In this paper, the calorimetric response of the amorphous phase was examined in hybrid nanocomposites which were prepared thanks to a facile synthetic route, by adding reduced graphene oxide (rGO), Cloisite 30B (C30B), or multiwalled carbon nanotubes (MWCNT) to lignin-filled poly(lactic acid) (PLA). The dispersion of both lignin and nanofillers was successful, according to a field-emission scanning-electron microscopy (FESEM) analysis. Lignin alone essentially acted as a crystallization retardant for PLA, and the nanocomposites shared this feature, except when MWCNT was used as nanofiller. All systems exhibiting a curtailed crystallization also showed better thermal stability than neat PLA, as assessed from thermogravimetric measurements. As a consequence of favorable interactions between the PLA matrix, lignin, and the nanofillers, homogeneous dispersion or exfoliation was assumed in amorphous samples from the increase of the cooperative rearranging region (CRR) size, being even more remarkable when increasing the lignin content. The amorphous nanocomposites showed a signature of successful filler inclusion, since no rigid amorphous fraction (RAF) was reported at the filler/matrix interface. Finally, the nanocomposites were crystallized up to their maximum extent from the glassy state in nonisothermal conditions. Despite similar degrees of crystallinity and RAF, significant variations in the CRR size were observed among samples, revealing different levels of mobility constraining in the amorphous phase, probably linked to a filler-dimension dependence of space filling.

2.
Materials (Basel) ; 13(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532132

RESUMEN

In this paper, gas permeability studies were performed on materials based on natural rubber/acrylonitrile butadiene rubber blends and nanoclay incorporated blend systems. The properties of natural rubber (NR)/nitrile rubber (NBR)/nanoclay nanocomposites, with a particular focus on gas permeability, are presented. The measurements of the barrier properties were assessed using two different gases-O2 and CO2-by taking in account the blend composition, the filler loading and the nature of the gas molecules. The obtained data showed that the permeability of gas transport was strongly affected by: (i) the blend composition-it was observed that the increase in acrylonitrile butadiene rubber component considerably decreased the permeability; (ii) the nature of the gas-the permeation of CO2 was higher than O2; (iii) the nanoclay loading-it was found that the permeability decreased with the incorporation of nanoclay. The localization of nanoclay in the blend system also played a major role in determining the gas permeability. The permeability of the systems was correlated with blend morphology and dispersion of the nanoclay platelets in the polymer blend.

3.
Int J Biol Macromol ; 134: 781-790, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31108144

RESUMEN

In this research work, we propose a synergistic effect of a green crosslinker and cellulose nanomaterial on the crystallinity, viscoelastic, and thermal properties of starch nanocomposites. A disaccharide derivative was used as a bio crosslinker and nanofiber from pineapple leaf as a reinforcing phase for starch. Sucrose was oxidised using periodate, that can selectively oxidise the vicinal hydroxyl group of sucrose and form tetra aldehyde derivative. Crystallinity of films after crosslinking decreased with successive addition of crosslinker. The melting temperature of films increased because of formation of more dense structure after crosslinking. Morphological investigations were analysed by atomic force microscopy. Polymer chain confinement and mechanics were quantified. The crosslink densities of the films were calculated using two models, phantom model and affine model, using storage modulus data. By using very low amount of crosslinker and nanoreinforcement, the properties of thermoplastic starch were significantly improved.


Asunto(s)
Biodegradación Ambiental , Celulosa/química , Modelos Teóricos , Nanocompuestos/química , Almidón/química , Temperatura , Algoritmos , Fenómenos Mecánicos , Microscopía de Fuerza Atómica , Nanofibras/química , Espectroscopía Infrarroja por Transformada de Fourier
4.
Int J Biol Macromol ; 81: 768-77, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26318667

RESUMEN

Nanocellulose fibers having an average diameter of 50nm were isolated from raw jute fibers by steam explosion process. The isolation of nanocellulose from jute fibers by this extraction process is proved by SEM, XRD, FTIR, birefringence and TEM characterizations. This nanocellulose was used as the reinforcing agent in natural rubber (NR) latex along with crosslinking agents to prepare crosslinked nanocomposite films. The effects of nanocellulose loading on the morphology and mechanics of the nanocomposites have been carefully analyzed. Significant improvements in the Young's modulus and tensile strength of the nanocomposite were observed because of the reinforcing ability of the nanocellulose in the rubber matrix. A mechanism is suggested for the formation of the Zn-cellulose complex. The three-dimensional network of cellulose nanofibers (cellulose/cellulose network and Zn/cellulose network) in the NR matrix plays a major role in improving the properties of the crosslinked nanocomposites.


Asunto(s)
Celulosa/química , Nanocompuestos/química , Goma/química , Nanocompuestos/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA