Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Mosq Control Assoc ; 39(4): 223-230, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38108430

RESUMEN

Achieving an appropriate droplet size distribution for adulticiding has proved problematic for unmanned aerial spray systems (UASSs). The high-pressure pumping systems utilized on crewed aircraft conflict with the weight constraints of UASSs. The alternative is a lightweight rotary atomizer, which when run at a maximum rpm with a minimal flow rate can achieve the appropriate droplet size distribution. For this study a UASS was calibrated to discharge an appropriate droplet size distribution (Dv0.5 of 48 µm and Dv0.9 of 76 µm). Spray was released from an altitude of 23 m (75 ft). The spray plume was shown to effectively disperse through the sampling zone. To achieve the appropriate application rate, the flight speed was 3 m/sec (6.7 mph) with an assumed swath of 150 m (500 ft). The objective of this project was not to conduct an operational application; instead only 1 flight line was used so that the effective swath width could be confirmed and the appropriate flightline separation defined. This study showed that control was achieved across distances of 100-150 m. Considering a swath width of 150 m (500 ft), ground deposition was 13-36% of applied material. Spray deposition corresponded well with the mortality data, which helped improve confidence in the data. The overall conclusion from this study is that aerial adulticiding is feasible with the system presented here. Further work is required to improve the atomization system to allow operational flight speeds and to determine the interaction between release altitude and droplet size in order to minimize ground deposition of application material.


Asunto(s)
Aeronaves , Culicidae , Animales , Altitud
2.
Artículo en Inglés | MEDLINE | ID: mdl-37947297

RESUMEN

Achieving an appropriate droplet size distribution for adulticiding has proved problematic for unmanned aerial spray systems (UASSs). The high-pressure pumping systems utilized on crewed aircraft conflict with the weight constraints of UASSs. The alternative is a lightweight rotary atomizer, which when run at a maximum rpm with a minimal flow rate can achieve the appropriate droplet size distribution. For this study a UASS was calibrated to discharge an appropriate droplet size distribution (Dv0.5 of 48 µm and Dv0.9 of 76 µm). Spray was released from an altitude of 23 m (75 ft). The spray plume was shown to effectively disperse through the sampling zone. To achieve the appropriate application rate, the flight speed was 3 m/sec (6.7 mph) with an assumed swath of 150 m (500 ft). The objective of this project was not to conduct an operational application; instead only 1 flight line was used so that the effective swath width could be confirmed and the appropriate flightline separation defined. This study showed that control was achieved across distances of 100-150 m. Considering a swath width of 150 m (500 ft), ground deposition was 13-36% of applied material. Spray deposition corresponded well with the mortality data, which helped improve confidence in the data. The overall conclusion from this study is that aerial adulticiding is feasible with the system presented here. Further work is required to improve the atomization system to allow operational flight speeds and to determine the interaction between release altitude and droplet size in order to minimize ground deposition of application material.

3.
J Econ Entomol ; 114(3): 1201-1210, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33837788

RESUMEN

Management responses to invasive forest insects are facilitated by the use of detection traps ideally baited with species-specific semiochemicals. Emerald ash borer, Agrilus planipennis Fairmaire, is currently invading North American forests, and since its detection in 2002, development of monitoring tools has been a primary research objective. We compared six trapping schemes for A. planipennis over 2 yr at sites in four U.S. states and one Canadian province that represented a range of background A. planipennis densities, canopy coverage, and ash basal area. We also developed a region-wide phenology model. Across all sites and both years, the 10th, 50th, and 90th percentile of adult flight occurred at 428, 587, and 837 accumulated degree-days, respectively, using a base temperature threshold of 10°C and a start date of 1 January. Most trapping schemes captured comparable numbers of beetles with the exception of purple prism traps (USDA APHIS PPQ), which captured significantly fewer adults. Trapping schemes varied in their trap catch across the gradient of ash basal area, although when considering trap catch as a binary response variable, trapping schemes were more likely to detect A. planipennis in areas with a higher ash component. Results could assist managers in optimizing trap selection, placement, and timing of deployment given local weather conditions, forest composition, and A. planipennis density.


Asunto(s)
Escarabajos , Fraxinus , Animales , Canadá , Control de Insectos , Insectos , Larva , Feromonas
4.
Pest Manag Sci ; 74(1): 141-148, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28731628

RESUMEN

BACKGROUND: Rhinoncomimus latipes (Coleoptera: Curculionidae) is a major biological control agent against the invasive plant Persicaria perfoliata. Release of R. latipes is challenging with the current visit-and-hand release approach because P. perfoliata shows a high degree of patchiness in the landscape, possesses recurved barbs on its stems, and often spreads into hard-to-access areas. This 3-year study developed and evaluated unmanned aerial systems (UAS) for precise aerial release of R. latipes to control P. perfoliata. RESULTS: We have developed two UAS (i.e. quad-rotor and tri-rotor) and an aerial release system to disseminate R. latipes. These include pods containing R. latipes and a dispenser to accommodate eight pods. Results of field tests to evaluate the systems showed no significant (P > 0.05) effects on survivorship and feeding ability of R. latipes after aerial release. CONCLUSION: Our study demonstrates the potential of UAS for precision aerial release of biological control agents to control invasive plants. The aerial deployment systems we have developed, including both pods and a dispenser, are low cost, logistically practical, and effective with no negative effects on aerially released R. latipes. © 2017 Society of Chemical Industry.


Asunto(s)
Aeronaves , Herbivoria , Longevidad , Control Biológico de Vectores/métodos , Polygonaceae , Gorgojos , Animales , Pennsylvania
5.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28625988

RESUMEN

The goal of this study was to develop effective and practical field sampling methods for quantification of aerial deposition of airborne conidia of Entomophaga maimaiga over space and time. This important fungal pathogen is a major cause of larval death in invasive gypsy moth (Lymantria dispar) populations in the United States. Airborne conidia of this pathogen are relatively large (similar in size to pollen), with unusual characteristics, and require specialized methods for collection and quantification. Initially, dry sampling (settling of spores from the air onto a dry surface) was used to confirm the detectability of E. maimaiga at field sites with L. dispar deaths caused by E. maimaiga, using quantitative PCR (qPCR) methods. We then measured the signal degradation of conidial DNA on dry surfaces under field conditions, ultimately rejecting dry sampling as a reliable method due to rapid DNA degradation. We modified a chamber-style trap commonly used in palynology to capture settling spores in buffer. We tested this wet-trapping method in a large-scale (137-km) spore-trapping survey across gypsy moth outbreak regions in Pennsylvania undergoing epizootics, in the summer of 2016. Using 4-day collection periods during the period of late instar and pupal development, we detected variable amounts of target DNA settling from the air. The amounts declined over the season and with distance from the nearest defoliated area, indicating airborne spore dispersal from outbreak areas.IMPORTANCE We report on a method for trapping and quantifying airborne spores of Entomophaga maimaiga, an important fungal pathogen affecting gypsy moth (Lymantria dispar) populations. This method can be used to track dispersal of E. maimaiga from epizootic areas and ultimately to provide critical understanding of the spatial dynamics of gypsy moth-pathogen interactions.


Asunto(s)
Entomophthorales/aislamiento & purificación , Técnicas Microbiológicas/métodos , Polen/microbiología , Esporas Fúngicas/aislamiento & purificación , Microbiología del Aire , Animales , Entomophthorales/genética , Entomophthorales/crecimiento & desarrollo , Larva/microbiología , Técnicas Microbiológicas/instrumentación , Mariposas Nocturnas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Estaciones del Año , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
6.
J Econ Entomol ; 109(6): 2424-2427, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27694506

RESUMEN

Current recommendations for applying the antiaggregation pheromone 3-methylcyclohex-2-en-1-one (MCH) to protect live trees from Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, infestation are to space individual passive releasers (MCH bubble capsules) on a 12- by 12-m grid throughout areas to be protected. Previous field studies and a theoretical study using a puff dispersion model to predict pheromone concentrations have shown that releasers emitting higher rates of MCH spaced farther apart may be as effective as the established standard treatment. During 2012 and 2013, we tested higher release rates of MCH at correspondingly wider spacings to keep the total amount of MCH released per unit area equal in all treatments. In 2012 near Challis, ID, treatments included the established standard release rate and spacing, four and six times the standard release rate at correspondingly wider spacings, and an untreated control. In 2013 near Ketchum, ID, treatments included the established standard release rate and spacing, five and seven times the standard release rate at correspondingly wider spacings, and an untreated control. Results from both years indicated that all MCH treatments were equally effective in reducing Douglas-fir beetle infestation. Using higher release rate formulations at wider spacings will reduce labor costs of installing MCH treatments, and, in cases where it is necessary, retrieving the releasers as well. In addition to reducing labor costs, the revised treatment protocol may increase the feasibility of treating areas that currently may not be possible due to treatment costs.


Asunto(s)
Ciclohexanos/farmacología , Control de Insectos/métodos , Feromonas/farmacología , Pseudotsuga , Gorgojos/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Agricultura Forestal/economía , Agricultura Forestal/métodos , Control de Insectos/economía , Pseudotsuga/crecimiento & desarrollo
8.
J Am Mosq Control Assoc ; 31(3): 262-70, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26375908

RESUMEN

The authors of a recently published paper summarized the development of a regression model for ground-based ultra-low volume applications, suggesting that their model was sufficiently verified that it could be used extensively for mosquito control. These authors claimed that their statistical model was superior in its predictive capability to the extensively developed and Environmental Protection Agency-validated AGDISP mechanistic model. In this technical review, the assumptions, reduction and interpretation of data, and conclusions reached with regard to their model are discussed, and explicit misstatements and incorrect mathematical relationships are pointed out. Two published versions of the model regression equation give substantially different results without explanation. Petri dish collection was used for very small droplets, with no mention of collection efficiency. Meteorological data were misused based on manufacturer's specification of instrument accuracy. We strongly disagree with many of the model results and show that the model misrepresents the actual behavior of aerosol sprays applied in the manner tested.


Asunto(s)
Culicidae , Insectos Vectores , Insecticidas , Control de Mosquitos/instrumentación , Control de Mosquitos/métodos , Aerosoles/química , Animales , Brotes de Enfermedades/prevención & control , Conceptos Meteorológicos , Modelos Teóricos
9.
J Econ Entomol ; 105(2): 451-60, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22606815

RESUMEN

An instantaneous puff dispersion model was used to assess concentration fields of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, antiaggregation pheromone, 3-methylcyclohex-2-en-1-one (MCH), within a 1-ha circular plot. Several combinations of MCH release rate and releaser spacing were modeled to theoretically analyze optimal deployment strategies. The combinations of MCH release rate and releaser spacing used in the modeling exercise were based on results of previous field studies of treatment efficacy. Analyses of model results suggest that a release rate up to six times the initial standard, at a correspondingly wider spacing to keep the total amount of pheromone dispersed per unit area constant, may be effective at preventing Douglas-fir beetle infestation. The model outputs also provide a visual representation of pheromone dispersion patterns that can occur after deployment of release devices in the field. These results will help researchers and practitioners design more effective deployment strategies.


Asunto(s)
Escarabajos , Ciclohexanos , Control de Insectos/métodos , Feromonas , Pseudotsuga , Animales , Modelos Biológicos , Estaciones del Año , Factores de Tiempo
10.
Environ Toxicol Chem ; 21(5): 1085-90, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12013131

RESUMEN

The coupling of the valley drift (VALDRIFT) atmospheric dispersion/deposition model with the agricultural dispersal (AGDISP) aircraft wake model generates a modeling system for predicting the off-target drift of pesticides sprayed in a mountain valley. The approach uses the AGDISP near-field spray model to estimate the mass fraction of pesticide remaining airborne after initial application, then the VALDRIFT complex terrain model to estimate the drift of pesticide from the target area. The modeling system inputs include detailed spray information, a measure (or estimate) of winds in the valley, and the valley topographic characteristics; the results are pesticide concentrations throughout the valley atmosphere and pesticide deposition to the valley surface. The AGDISP and VALDRIFT models are operated independently, with the results from AGDISP being used as input to VALDRIFT through user-created data files. The modeling system was evaluated using pesticide drift data from spray trials conducted in the Mill Creek Canyon of Utah's Wasatch Mountains, USA, during the late spring of 1993. The predicted deposition compared within a factor of three of the observations (70% of the time) at all sampling locations extending several kilometers down-valley from the spray treatment block. The overall average ratio of predicted-to-observed deposition was 0.9.


Asunto(s)
Agricultura , Contaminantes Atmosféricos/análisis , Modelos Teóricos , Plaguicidas , Viento , Aeronaves , Altitud , Predicción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA