Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(37): 44294-44301, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34498844

RESUMEN

To guarantee a long lifetime of perovskite-based photovoltaics, the selected materials need to survive relatively high-temperature stress during the solar cell operation. Highly efficient n-i-p perovskite solar cells (PSCs) often degrade at high operational temperatures due to morphological instability of the hole transport material 2,2',7,7'-tetrakis (N,N-di-p-methoxyphenyl-amine)9,9'-spirobifluorene (Spiro-OMeTAD). We discovered that the detrimental large-domain spiro-OMeTAD crystallization is caused by the simultaneous presence of tert-butylpyridine (tBP) additive and gold (Au) as a capping layer. Based on this discovery and our understanding, we demonstrated facile strategies that successfully stabilize the amorphous phase of spiro-OMeTAD film. As a result, the thermal stability of n-i-p PSCs is largely improved. After the spiro-OMeTAD films in the PSCs were stressed for 1032 h at 85 °C in the dark in nitrogen environment, reference PSCs retained only 22% of their initial average power conversion efficiency (PCE), while the best target PSCs retained 85% relative average PCE. Our work suggests facile ways to realize efficient and thermally stable spiro-OMeTAD containing n-i-p PSCs.

2.
Anal Chem ; 93(19): 7226-7234, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33939426

RESUMEN

Cable bacteria are electroactive bacteria that form a long, linear chain of ridged cylindrical cells. These filamentous bacteria conduct centimeter-scale long-range electron transport through parallel, interconnected conductive pathways of which the detailed chemical and electrical properties are still unclear. Here, we combine time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM) to investigate the structure and composition of this naturally occurring electrical network. The enhanced lateral resolution achieved allows differentiation between the cell body and the cell-cell junctions that contain a conspicuous cartwheel structure. Three ToF-SIMS modes were compared in the study of so-called fiber sheaths (i.e., the cell material that remains after the removal of cytoplasm and membranes, and which embeds the electrical network). Among these, fast imaging delayed extraction (FI-DE) was found to balance lateral and mass resolution, thus yielding the following multiple benefits in the study of structure-composition relations in cable bacteria: (i) it enables the separate study of the cell body and cell-cell junctions; (ii) by combining FI-DE with in situ AFM, the depth of Ni-containing protein-key in the electrical transport-is determined with greater precision; and (iii) this combination prevents contamination, which is possible when using an ex situ AFM. Our results imply that the interconnects in extracted fiber sheaths are either damaged during extraction, or that their composition is different from fibers, or both. From a more general analytical perspective, the proposed methodology of ToF-SIMS in the FI-DE mode combined with in situ AFM holds great promise for studying the chemical structure of other biological systems.


Asunto(s)
Bacterias , Espectrometría de Masa de Ion Secundario , Microscopía de Fuerza Atómica
3.
Adv Biosyst ; 4(7): e2000006, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32449305

RESUMEN

Cable bacteria are an emerging class of electroactive organisms that sustain unprecedented long-range electron transport across centimeter-scale distances. The local pathways of the electrical currents in these filamentous microorganisms remain unresolved. Here, the electrical circuitry in a single cable bacterium is visualized with nanoscopic resolution using conductive atomic force microscopy. Combined with perturbation experiments, it is demonstrated that electrical currents are conveyed through a parallel network of conductive fibers embedded in the cell envelope, which are electrically interconnected between adjacent cells. This structural organization provides a fail-safe electrical network for long-distance electron transport in these filamentous microorganisms. The observed electrical circuit architecture is unique in biology and can inspire future technological applications in bioelectronics.


Asunto(s)
Bacterias/química , Conductividad Eléctrica
4.
Front Microbiol ; 9: 3044, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619135

RESUMEN

Cable bacteria are long, multicellular micro-organisms that are capable of transporting electrons from cell to cell along the longitudinal axis of their centimeter-long filaments. The conductive structures that mediate this long-distance electron transport are thought to be located in the cell envelope. Therefore, this study examines in detail the architecture of the cell envelope of cable bacterium filaments by combining different sample preparation methods (chemical fixation, resin-embedding, and cryo-fixation) with a portfolio of imaging techniques (scanning electron microscopy, transmission electron microscopy and tomography, focused ion beam scanning electron microscopy, and atomic force microscopy). We systematically imaged intact filaments with varying diameters. In addition, we investigated the periplasmic fiber sheath that remains after the cytoplasm and membranes were removed by chemical extraction. Based on these investigations, we present a quantitative structural model of a cable bacterium. Cable bacteria build their cell envelope by a parallel concatenation of ridge compartments that have a standard size. Larger diameter filaments simply incorporate more parallel ridge compartments. Each ridge compartment contains a ~50 nm diameter fiber in the periplasmic space. These fibers are continuous across cell-to-cell junctions, which display a conspicuous cartwheel structure that is likely made by invaginations of the outer cell membrane around the periplasmic fibers. The continuity of the periplasmic fibers across cells makes them a prime candidate for the sought-after electron conducting structure in cable bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA