Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Netw Sci ; 8(1): 53, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614376

RESUMEN

Inferring the source of a diffusion in a large network of agents is a difficult but feasible task, if a few agents act as sensors revealing the time at which they got hit by the diffusion. One of the main limitations of current source identification algorithms is that they assume full knowledge of the contact network, which is rarely the case, especially for epidemics, where the source is called patient zero. Inspired by recent implementations of contact tracing algorithms, we propose a new framework, which we call Source Identification via Contact Tracing Framework (SICTF). In the SICTF, the source identification task starts at the time of the first hospitalization, and initially we have no knowledge about the contact network other than the identity of the first hospitalized agent. We may then explore the network by contact queries, and obtain symptom onset times by test queries in an adaptive way, i.e., both contact and test queries can depend on the outcome of previous queries. We also assume that some of the agents may be asymptomatic, and therefore cannot reveal their symptom onset time. Our goal is to find patient zero with as few contact and test queries as possible. We implement two local search algorithms for the SICTF: the LS algorithm, which has recently been proposed by Waniek et al. in a similar framework, is more data-efficient, but can fail to find the true source if many asymptomatic agents are present, whereas the LS+ algorithm is more robust to asymptomatic agents. By simulations we show that both LS and LS+ outperform previously proposed adaptive and non-adaptive source identification algorithms adapted to the SICTF, even though these baseline algorithms have full access to the contact network. Extending the theory of random exponential trees, we analytically approximate the source identification probability of the LS/ LS+ algorithms, and we show that our analytic results match the simulations. Finally, we benchmark our algorithms on the Data-driven COVID-19 Simulator (DCS) developed by Lorch et al., which is the first time source identification algorithms are tested on such a complex dataset.

2.
Appl Netw Sci ; 2(1): 20, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30443575

RESUMEN

Detecting where an epidemic started, i.e., which node in a network was the source, is of crucial importance in many contexts. However, finding the source of an epidemic can be challenging, especially because the information available is often sparse and noisy. We consider a setting in which we want to localize the source based exclusively on the information provided by a small number of observers - i.e., nodes that can reveal if and when they are infected - and we study where such observers should be placed. We show that the optimal observer placement depends not only on the topology of the network, but also on the variance of the node-to-node transmission delays. We consider both low-variance and high-variance regimes for the transmission delays and propose algorithms for observer placement in both cases. In the low-variance regime, it suffices to only consider the network-topology and to choose observers that, based on their distances to all other nodes in the network, can distinguish among possible sources. However, the high-variance regime requires a new approach in order to guarantee that the observed infection times are sufficiently informative about the location of the source and do not get masked by the noise in the transmission delays; this is accomplished by additionally ensuring that the observers are not placed too far apart. We validate our approaches with simulations on three real-world networks. Compared to state-of-the-art strategies for observer placement, our methods have a better performance in terms of source-localization accuracy for both the low- and the high-variance regimes.

3.
Phys Rev Lett ; 109(6): 068702, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-23006310

RESUMEN

How can we localize the source of diffusion in a complex network? Because of the tremendous size of many real networks-such as the internet or the human social graph-it is usually unfeasible to observe the state of all nodes in a network. We show that it is fundamentally possible to estimate the location of the source from measurements collected by sparsely placed observers. We present a strategy that is optimal for arbitrary trees, achieving maximum probability of correct localization. We describe efficient implementations with complexity O(N(α)), where α=1 for arbitrary trees and α=3 for arbitrary graphs. In the context of several case studies, we determine how localization accuracy is affected by various system parameters, including the structure of the network, the density of observers, and the number of observed cascades.


Asunto(s)
Modelos Teóricos , Difusión
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 2): 026103, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17930100

RESUMEN

Many complex systems may be described by not one but a number of complex networks mapped on each other in a multi-layer structure. Because of the interactions and dependencies between these layers, the state of a single layer does not necessarily reflect well the state of the entire system. In this paper we study the robustness of five examples of two-layer complex systems: three real-life data sets in the fields of communication (the Internet), transportation (the European railway system), and biology (the human brain), and two models based on random graphs. In order to cover the whole range of features specific to these systems, we focus on two extreme policies of system's response to failures, no rerouting and full rerouting. Our main finding is that multi-layer systems are much more vulnerable to errors and intentional attacks than they appear from a single layer perspective.

5.
PLoS One ; 2(7): e597, 2007 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-17611629

RESUMEN

Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Fibras Nerviosas/ultraestructura , Tamaño de los Órganos , Sustancia Gris Periacueductal/anatomía & histología , Sustancia Gris Periacueductal/ultraestructura
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(3 Pt 2): 036114, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17025715

RESUMEN

The knowledge of real-life traffic patterns is crucial for a good understanding and analysis of transportation systems. These data are quite rare. In this paper we propose an algorithm for extracting both the real physical topology and the network of traffic flows from timetables of public mass transportation systems. We apply this algorithm to timetables of three large transportation networks. This enables us to make a systematic comparison between three different approaches to construct a graph representation of a transportation network; the resulting graphs are fundamentally different. We also find that the real-life traffic pattern is very heterogenous, in both space and traffic flow intensities, which makes it very difficult to approximate the node load with a number of topological estimators.

7.
Phys Rev Lett ; 96(13): 138701, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16712049

RESUMEN

Many complex networks are only a part of larger systems, where a number of coexisting topologies interact and depend on each other. We introduce a layered model to facilitate the description and analysis of such systems. As an example of its application, we study the load distribution in three transportation systems, where the lower layer is the physical infrastructure and the upper layer represents the traffic flows. This layered view allows us to capture the fundamental differences between the real load and commonly used load estimators, which explains why these estimators fail to approximate the real load.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA