Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(29): 20046-20058, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007286

RESUMEN

NaGdF4:Dy3+ nanocrystals (NCs) have been synthesized using a precipitation technique. The structural characteristics and morphology of the materials were analyzed using X-ray diffraction patterns and scanning electron microscopy images, respectively. The photoluminescence excitation spectra, emission spectra and decay curves of all samples were recorded at room temperature. The color feature of Dy3+ luminescence was estimated using CIE chromaticity coordinates and the correlated color temperature. The radiative properties of the Dy3+:4F9/2 level in the material were analyzed within the framework of JO theory. In NaGdF4:Dy3+ NCs, the energy transfer from Gd3+ to Dy3+ causes an enhancement in the luminescence of the Dy3+ ions. The rate of the processes taking part in the depopulation of Gd3+ ions was estimated. The energy transfer between Dy3+ ions leads to the luminescence quenching of NaGdF4:Dy3+. In this process, the dipole-dipole interaction, which is found by using the Inokuti-Hirayama model, is the dominant mechanism. The characteristic parameters of the energy transfer processes between Dy3+ ions have also been calculated in detail.

2.
Nanotechnology ; 32(46)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34359057

RESUMEN

In this study, we report a facile and effective approach for large-scale production of nitrogen-doped TiO2nanocrystals (UNTs) by a combination of ultrasonic irradiation and electrochemistry at room temperature using NH4NO3electrolyte as the nitrogen source. The as-prepared UNTs were then characterized by x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and UV-visible diffuse reflectance spectroscopy. The results indicated that the nitrogen content of UNTs reached 9.3% and bandgap energy of 2.62 eV, thus gave the high photocatalytic degradation of methylene blue under visible light irradiation. The mechanism for the formation of UNTs by ultrasonic-assisted electrochemical approach was also proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA