Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ultramicroscopy ; 256: 113885, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38006714

RESUMEN

Three-dimensional elemental mapping in atom probe microscopy provides invaluable insights into the structure and composition of interfaces in materials. Quasi-atomic resolution facilitates access to the solute decoration of grain boundaries, advancing the knowledge on local segregation and depletion phenomena. More recent developments unlocked three-dimensional mapping of the interfacial excess across grain boundaries. Such detailed understanding of the local structure and composition of these interfaces enabled advancements in processing methods and material development. However, many engineering alloys, such as Ni-based superalloys, have much more complex microstructures with various solutes and precipitates in close proximity to grain boundaries. The complex interaction of grain boundary segregation and grain boundary precipitates requires precise compositional control. However, abrupt changes in solute solubility across phase boundaries obscure the interfacial excess in proximity to grain boundaries. Therefore, this study provides a methodological framework of the quantitative characterization of phase boundaries in proximity to grain boundaries using atom probe microscopy. The detailed mass spectrum ranging of MC, M23C6, and M6C carbides is explored in order to achieve satisfactory compositional information. Proximity histograms and correlating concentration difference profiles determine the interface location, where a Gibbs dividing surface is not accessible. This enables reliable direct calculation of the interfacial excess across phase boundaries. Intuitively interpretable and quantitative 'interface plots' are introduced, and showcased for phase boundaries between γ-matrix, γ' precipitates, GB-γ', MC, M23C6, and M6C carbides. The presented framework advances access to the local composition in proximity to grain boundaries and may be applicable to other engineering alloys or materials with functional properties.

2.
Ultramicroscopy ; 204: 91-100, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31132736

RESUMEN

Recent advancements in data mining methods in atom probe microscopy have enabled new quantitative chemical and microstructural characterization beyond the standard three-dimensional reconstruction. For example, spatial distribution maps have been developed to enable visualisation of the local lattice occupation of a selected region of interest. However, the precision of such studies yet remains unknown as correlation with complementary methods would be required. Therefore, a correlative study of atom probe microscopy, neutron diffraction and microstructural modelling of long-range ordered, nano-scale domains in a well-researched Fe-Co-Mo Maraging-type steel is presented here. Its microstructure consists of Mo-enriched µ-phase (Fe,Co)7Mo6 particles embedded into a body-centred cubic FeCo matrix. Previous research has shown that under slow cooling conditions, this matrix partially decomposes into nano-scale B2 long-range ordered domains surrounded by disordered regions, resulting in reduced toughness in potential cutting applications. Usually, a long-range order parameter S referring to ideal B2 long-range order is assumed within such domains according to neutron diffraction. However, atom probe microscopy and modelling results presented in the current study indicate lattice imperfections with a partial substitution of atoms on the Fe- and Co-sublattices. After considering preferential retention effects during the atom probe experiment, a model unit cell is presented to define the observed imperfect B2 long-range order as pseudo-D03 long-range order, and the potential impact on the materials properties is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA