Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proteomics Clin Appl ; 15(2-3): e2000025, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33580906

RESUMEN

PURPOSE: Improved early diagnosis and determination of aggressiveness of prostate cancer (PC) is important to select suitable treatment options and to decrease over-treatment. The conventional marker is total prostate specific antigen (PSA) levels in blood, but lacks specificity and ability to accurately discriminate indolent from aggressive disease. EXPERIMENTAL DESIGN: In this study, we sought to identify a serum biomarker signature associated with metastatic PC. We measured 157 analytes in 363 serum samples from healthy subjects, patients with non-metastatic PC and patients with metastatic PC, using a recombinant antibody microarray. RESULTS: A signature consisting of 69 proteins differentiating metastatic PC patients from healthy controls was identified. CONCLUSIONS AND CLINICAL RELEVANCE: The clinical value of this biomarker signature requires validation in larger independent patient cohorts before providing a new prospect for detection of metastatic PC.


Asunto(s)
Sobretratamiento
2.
Biochem J ; 476(5): 783-794, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30755463

RESUMEN

Type IV P-type ATPases (P4 ATPases) are lipid flippases that catalyze phospholipid transport from the exoplasmic to the cytoplasmic leaflet of cellular membranes, but the mechanism by which they recognize and transport phospholipids through the lipid bilayer remains unknown. In the present study, we succeeded in purifying recombinant aminophospholipid ATPase 2 (ALA2), a member of the P4 ATPase subfamily in Arabidopsis thaliana, in complex with the ALA-interacting subunit 5 (ALIS5). The ATP hydrolytic activity of the ALA2-ALIS5 complex was stimulated in a highly specific manner by phosphatidylserine. Small changes in the stereochemistry or the functional groups of the phosphatidylserine head group affected enzymatic activity, whereas alteration in the length and composition of the acyl chains only had minor effects. Likewise, the enzymatic activity of the ALA2-ALIS5 complex was stimulated by both mono- and di-acyl phosphatidylserines. Taken together, the results identify the lipid head group as the key structural element for substrate recognition by the P4 ATPase.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Fosfatidilserinas/química , Proteínas de Transferencia de Fosfolípidos/química , Adenosina Trifosfatasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosfatidilserinas/genética , Proteínas de Transferencia de Fosfolípidos/genética , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
3.
Cytometry A ; 89(7): 673-80, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27272389

RESUMEN

Lipid flippases are integral membrane proteins that play a central role in moving lipids across cellular membranes. Some of these transporters are ATPases that couple lipid translocation to ATP hydrolysis, whereas others function without any discernible metabolic energy input. A growing number of lipid flippases has been identified but key features of their activity remain to be elucidated. A well-established method to characterize ATP-driven flippases is based on their heterologous expression in yeast, followed by incubation of the cells with fluorescent lipids. Internalization of these probes is typically monitored by flow cytometry, a costly and maintenance-intensive method. Here, we have optimized a protocol to use an automated image-based cell counter to accurately measure lipid uptake by heterologous lipid flippases expressed in yeast. The method was validated by comparison with the classical flow cytometric evaluation of lipid-labeled cells. In addition, we demonstrated that expression of fluorescently tagged flippase complexes can be directly co-related with fluorescent lipid uptake using the image-based cell counter system. The method extends the number of techniques available for characterization of lipid flippase activity, and should be readily adaptable to analyze a variety of other transport systems in yeast, parasites, and mammalian cells. © 2016 International Society for Advancement of Cytometry.


Asunto(s)
Proteínas Portadoras/análisis , Citometría de Imagen/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/enzimología , Transportadoras de Casetes de Unión a ATP/análisis , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Portadoras/metabolismo , Citometría de Flujo , Lípidos , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Biochem J ; 473(11): 1605-15, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27048590

RESUMEN

P-type ATPases of subfamily IV (P4-ATPases) constitute a major group of phospholipid flippases that form heteromeric complexes with members of the Cdc50 (cell division control 50) protein family. Some P4-ATPases interact specifically with only one ß-subunit isoform, whereas others are promiscuous and can interact with several isoforms. In the present study, we used a site-directed mutagenesis approach to assess the role of post-translational modifications at the plant ALIS5 ß-subunit ectodomain in the functionality of the promiscuous plant P4-ATPase ALA2. We identified two N-glycosylated residues, Asn(181) and Asn(231) Whereas mutation of Asn(231) seems to have a small effect on P4-ATPase complex formation, mutation of evolutionarily conserved Asn(181) disrupts interaction between the two subunits. Of the four cysteine residues located in the ALIS5 ectodomain, mutation of Cys(86) and Cys(107) compromises complex association, but the mutant ß-subunits still promote complex trafficking and activity to some extent. In contrast, disruption of a conserved disulfide bond between Cys(158) and Cys(172) has no effect on the P4-ATPase complex. Our results demonstrate that post-translational modifications in the ß-subunit have different functional roles in different organisms, which may be related to the promiscuity of the P4-ATPase.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Adenosina Trifosfatasas/genética , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Mutación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Nicotiana/metabolismo
5.
Pflugers Arch ; 466(7): 1227-40, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24077738

RESUMEN

Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Among these ATP-driven transporters, the P4 subfamily of P-type ATPases (P4-ATPases) comprises lipid flippases that catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of cell membranes. While initially characterized as aminophospholipid translocases, recent studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates, including lysophospholipids and synthetic alkylphospholipids. At the same time, the cellular processes known to be directly or indirectly affected by this class of transporters have expanded to include the regulation of membrane traffic, cytoskeletal dynamics, cell division, lipid metabolism, and lipid signaling. In this review, we will summarize the basic features of P4-ATPases and the physiological implications of their lipid transport activity in the cell.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Membrana Celular/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Animales , Membrana Celular/enzimología , Humanos , Datos de Secuencia Molecular , Proteínas de Transferencia de Fosfolípidos/química , Fosfolípidos/metabolismo , Especificidad de la Especie , Especificidad por Sustrato
6.
J Biol Chem ; 288(37): 26419-29, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23836891

RESUMEN

Plasma membrane H(+)-ATPases form a subfamily of P-type ATPases responsible for pumping protons out of cells and are essential for establishing and maintaining the crucial transmembrane proton gradient in plants and fungi. Here, we report the reconstitution of the Arabidopsis thaliana plasma membrane H(+)-ATPase isoform 2 into soluble nanoscale lipid bilayers, also termed nanodiscs. Based on native gel analysis and cross-linking studies, the pump inserts into nanodiscs as a functional monomer. Insertion of the H(+)-ATPase into nanodiscs has the potential to enable structural and functional characterization using techniques normally applicable only for soluble proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Membrana Celular/enzimología , Membrana Dobles de Lípidos/metabolismo , ATPasas de Translocación de Protón/metabolismo , Reactivos de Enlaces Cruzados , Activación Enzimática , Escherichia coli/metabolismo , Isoenzimas/metabolismo , Microscopía Electrónica de Transmisión , Saccharomyces cerevisiae/metabolismo , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA