Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(9): e0307868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39298421

RESUMEN

In Myanmar, where backyard, semi-intensive, and intensive pig (Sus scrofa domesticus) farming coexist, there is limited understanding of the zoonotic risks and antimicrobial resistance (AMR) associated with these farming practices. This study was conducted to investigate the prevalence, AMR and genomic features of Salmonella in pig farms in the Yangon region and the impact of farm intensification to provide evidence to support risk-based future management approaches. Twenty-three farms with different production scales were sampled for two periods with three sampling-visit each. Antimicrobial susceptibility tests and whole-genome sequencing were performed on the isolates. The prevalence of Salmonella was 44.5% in samples collected from backyard farms, followed by intensive (39.5%) and semi-intensive farms (19.5%). The prevalence of multi-drug resistant isolates from intensive farms (45/84, 53.6%) was higher than those from backyard (32/171, 18.7%) and semi-intensive farms (25/161, 15.5%). Among 28 different serovars identified, S. Weltevreden (40; 14.5%), S. Kentucky (38; 13.8%), S. Stanley (35, 12.7%), S. Typhimurium (22; 8.0%) and S. Brancaster (20; 7.3%) were the most prevalent serovars and accounted for 56.3% of the genome sequenced strains. The diversity of Salmonella serovars was highest in semi-intensive and backyard farms (21 and 19 different serovars, respectively). The high prevalence of globally emerging S. Kentucky ST198 was detected on backyard farms. The invasive-infection linked typhoid-toxin gene (cdtB) was found in the backyard farm isolated S. Typhimurium, relatively enriched in virulence and AMR genes, presented an important target for future surveillance. While intensification, in terms of semi-intensive versus backyard production, maybe a mitigator for zoonotic risk through a lower prevalence of Salmonella, intensive production appears to enhance AMR-associated risks. Therefore, it remains crucial to closely monitor the AMR and virulence potential of this pathogen at all scales of production. The results underscored the complex relationship between intensification of animal production and the prevalence, diversity and AMR of Salmonella from pig farms in Myanmar.


Asunto(s)
Granjas , Salmonelosis Animal , Salmonella , Enfermedades de los Porcinos , Animales , Porcinos/microbiología , Mianmar/epidemiología , Salmonelosis Animal/microbiología , Salmonelosis Animal/epidemiología , Salmonella/genética , Salmonella/efectos de los fármacos , Salmonella/aislamiento & purificación , Prevalencia , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/epidemiología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma , Genoma Bacteriano
2.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37963246

RESUMEN

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus suis , Enfermedades de los Porcinos , Animales , Humanos , Porcinos , Infecciones Estreptocócicas/veterinaria , Granjas , Enfermedades de los Porcinos/epidemiología , Virulencia/genética , Streptococcus suis/genética , Ganado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA