RESUMEN
During the pandemic of COVID-19, numerous waves of infections affected the two hemispheres with different impacts on each country. Throughout these waves, and with the emergence of new variants, health systems and scientists have tried to provide real-time responses to the complex biology of SARS-CoV-2, dealing with different clinical presentations, biological characteristics, and clinical impact of these variants. In this context, knowing the extent period in which an infected individual releases infectious viral particles has important implications for public health. This work aimed to investigate viral RNA shedding and infectivity of SARS-CoV-2 beyond 10 days after symptom onset (SO). A prospective multicenter study was performed between July/2021 and February/2022 on 116 immunized strategic personnel with COVID-19 diagnosed by RT-qPCR, with asymptomatic (7%), mild (91%) or moderate disease (2%). At the time of diagnosis, 70% had 2 doses of vaccines, 26% had 2 plus a booster, and 4% had one dose. After day 10 from SO, sequential nasopharyngeal swabs were taken to perform RT-qPCR, viral isolation, and S gene sequencing when possible. Viral sequences were obtained in 98 samples: 43% were Delta, 16% Lambda, 15% Gamma, 25% Omicron (BA.1) and 1% Non-VOC/VOI, in accordance with the main circulating variants at each moment. SARS-CoV-2 RNA was detected 10 days post SO in 57% of the subjects. Omicron was significantly less persistent. Noteworthy, infective viruses could not be isolated in any of the samples. In conclusion, a 10-days isolation period was useful to prevent further infections, and proved valid for the variants studied. Recently, even shorter periods have been applied, as the Omicron variant is prevalent, and worldwide population is largely vaccinated. In the future, facing the possible emergence of new variants and considering immunological status, a return to 10 days may be necessary.
Asunto(s)
COVID-19 , ARN Viral , Humanos , Estudios Prospectivos , Argentina/epidemiología , ARN Viral/genética , SARS-CoV-2/genética , COVID-19/epidemiologíaRESUMEN
Our perspective on nature has changed throughout history and at the same time has affected directly or indirectly our perception of biological processes. In that sense, the "fluxus" of information in a viral population arises a result of a much more complex process than the encoding of a protein by a gene, but as the consequence of the interaction between all the components of the genome and its products: DNA, RNA, and proteins and its modulation by the environment. Even modest "agents of life" like viruses display an intricate way to express their information. This conclusion can be withdrawn from the huge quantity of data furnished by new and potent technologies available now to analyze viral populations. Based on this premise, evolutive processes for viruses are now interpreted as a simultaneous and coordinated phenomenon that leads to global (i.e., not gradual or 'random') remodeling of the population. Our system of study involves the modulation of herpes simplex virus populations through the selective pressure exerted by carrageenans, natural compounds that interfere with virion attachment to cells. On this line, we demonstrated that the passaging of virus in the presence of carrageenans leads to the appearance of progeny virus phenotipically different from the parental seed, particularly, the emergence of syncytial (syn) variants. This event precedes the emergence of mutations in the population which can be readily detected five passages after from the moment of the appearance of syn virus. This observation can be explained taking into consideration that the onset of phenotypic changes may be triggered by "environmental-sensitive" glycoproteins. These "environmental-sensitive" glycoproteins may act by themselves or may transmit the stimulus to "adapter" proteins, particularly, proteins of the tegument, which eventually modulate the expression of genomic products in the "virocell." The modulation of the RNA network is a common strategy of the virocell to respond to environmental changes. This "fast" adaptive mechanism is followed eventually by the appearance of mutations in the viral genome. In this paper, we interpret these findings from a philosophical and scientific point of view interconnecting epigenetic action, exerted by carragenans from early RNA network-DNA interaction to late DNA mutation. The complexity of HSV virion structure is an adequate platform to envision new studies on this topic that may be complemented in a near future through the analysis of the genetic dynamics of HSV populations.