Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20148, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39209886

RESUMEN

This study established a novel infield sensing approach based on detection of the volatile compound markers in skin secretions. This was based on analysis of volatile compounds in axillary sweat samples collected from RT-PCR-proven Coronavirus disease 2019 (COVID-19) positive and negative populations using gas chromatography-mass spectrometry (GC-MS). The analysis proposed the possible markers of the monoaromatic compounds and ethyl hexyl acrylate. A portable photo ionization detector (PID) incorporated with the selective material towards the marker compounds was then developed with the pressurized injection approach. This provided the accuracy of 100% in the research phase (n = 125). The developed approach was then applied for screening of 2207 COVID-19 related cases covering the periods of the Alpha, Beta, Delta and Omicron variants of SARS-CoV-2 infection in Bangkok, Thailand. This offered the sensitivity, specificity and accuracy ranges of 92-99, 93-98 and 95-97%, respectively.


Asunto(s)
COVID-19 , Cromatografía de Gases y Espectrometría de Masas , SARS-CoV-2 , Sudor , Compuestos Orgánicos Volátiles , Humanos , COVID-19/diagnóstico , COVID-19/virología , Sudor/química , Compuestos Orgánicos Volátiles/análisis , SARS-CoV-2/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas/métodos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Sensibilidad y Especificidad , Tailandia , Prueba de COVID-19/métodos , Biomarcadores/análisis , Anciano , Adulto Joven
2.
Analyst ; 148(13): 2956-2964, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37264678

RESUMEN

During the corona virus disease 2019 (COVID-19) pandemic period, rapid screening of covid-19 patients has been of great interest by developing a fluorescent sensor for complexation with nonanal, which is a marker for Covid-19 detection in sweat. Solid phase micro-extraction gas chromatography-mass spectrometry (SPME GC-MS) was initially used to quantify nonanal in armpit sweat samples based on an external calibration curve. A sample containing a nonanal content above the threshold of 1.04 µL is expected to be COVID-19 positive with a sensitivity and specificity of 87% and 89%, respectively, validated by comparison with RT-PCR results. For more practical applications, helicene dye-encapsulated ethyl cellulose, namely EC@dyeNH, was applied to screen 140 sweat samples collected from the foreheads of volunteers. The mixed sensor and sweat solution droplets were then visualized and imaged under blacklight. The COVID-19 positive droplets exhibited yellow fluorescence emission, the brightness of which could be measured by using ImageJ in the grey scale. With the optimum color intensity of >73 for positive results, the screening performance was observed with a sensitivity and specificity of 96% and 93%, respectively. The overall test time of this method is approximately less than 15 min. This alternative method offers a promising practical screening approach for the diagnosis of COVID-19 in sweat.


Asunto(s)
COVID-19 , Humanos , Cromatografía de Gases y Espectrometría de Masas , COVID-19/diagnóstico , Sudor/química , Sudor/virología , Prueba de COVID-19
3.
Artículo en Inglés | MEDLINE | ID: mdl-36301188

RESUMEN

Over the past years, lung cancer has been one of the vital cancer-related mortalities worldwide and has inevitably exhibited the highest death rate with the subsequent need for facile and convenient diagnosis approaches to identify the severity of cancer. Previous research has reported long-chain aldehyde compounds such as hexanal, heptanal, octanal, and nonanal as potential biomarkers of lung cancer. Herein, the helicene dye-encapsulated ethyl cellulose (EC@dye-NH) nanosensors have been applied for the potentially sensitive and specific detection of long-chain aldehydes in aqueous media. The sensors contain the intrinsic hydrazide group of dye-NH, which is capable of reacting an aldehyde group via imine formation and the EC backbone. This offers the synergistic forces of hydrophobic interactions with alkyl long-chain aldehydes, which could induce self-assembly encapsulation of EC@dye-NH nanosensors and strong fluorescence responses. The addition of long-chain aldehyde would induce the complete micellar-like nanoparticle formation within 15 min in acetate buffer pH 5.0. The limit of detection (LOD) values of EC@dye-NH nanosensors toward heptanal, octanal, and nonanal were 40, 100, and 10 µM, respectively, without interference from the lung fluid matrices and short-chain aldehydes. For practical applicability, this sensing platform was developed for quantification of the long-chain aldehydes in lung fluid samples with 98-101% recoveries. This EC@dye-NH nanosensor was applied to quantify nonanal contents in lung fluid samples. The results of this method based on EC@dye-NH nanosensors were then validated using standard gas chromatography-mass spectrometry (GC-MS), which gave results consistent with the proposed method. With intracellular imaging application, the EC@dye-NH nanosensors demonstrated excellent intracellular uptake and strong green fluorescence emission upon introducing the nonanal into the lung cancer cells (A549). Thus, the developed nanosensing approach served as the potential fluorescent probes in medical and biological fields, especially for lung cancer disease diagnosis based on highly selective and sensitive detection of long-chain aldehydes.

4.
RSC Adv ; 11(11): 5885-5893, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35814731

RESUMEN

Electrocoagulation (EC) approach was developed to allow fast sample cleanup step prior to selective analysis of non- and mono-hydroxylated phenolic acids in red wine samples with high performance liquid chromatography hyphenated with UV detection (HPLC-UV). EC system with the wine in KCl(aq) electrolyte (1.5 mol L-1) was employed removing the polymeric pigments with good recovery of 39 peaks from 64 peaks. The mechanisms mainly involve enrichment induced aggregation and reduction of the pigments at the cathode and the adsorption onto the EC sludge. The EC was further miniaturized employing two intercalated stainless steel spring electrodes at 9.0 V which allowed removal of >99% interference peak area from the pigments within 5 s. The recoveries of the target phenolic acids (p-hydroxybenzoic acid, vanillic acid, syringic acid and ferulic acid) were within the range of 86-102%. The repeated analysis of these standards revealed <2 and ≤10% RSD of the intra-day and inter-day precisions, respectively. The linearities of their calibration curves were observed with R 2 > 0.99. Their method detection limits were within the range of 0.02-0.20 mg L-1.

5.
J Sep Sci ; 44(2): 666-675, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33197986

RESUMEN

In this study, thin-layer chromatography was applied for selective extraction of volatile compounds in perfume prior to analysis with solid phase microextraction and gas chromatography-mass spectrometry. The standard compounds were desorbed from the thin-layer chromatography plate and extracted at 80°C for 15 min showing good linearity of the calibration curves (R2  > 0.98) and acceptable recovery range (65-81%). The plate after the separation was cut into four smaller parts followed by solid phase microextraction/gas chromatography-mass spectrometry analysis, which revealed different compound profile in each part with the correlation between log P of the standard compounds and their positions along the thin-layer chromatography plate (R2  = 0.65). This approach was applied to analyze perfume compounds in the sample with strong matrix interference from the synthetic agarwood. Terpene hydrocarbons (woody-based odors), ketones/esters, aldehydes, ethers, and alcohols were mostly observed at 8 ± 1, 6 ± 1, 5 ± 2, 4 ± 2, and 3 ± 2 cm, respectively, from the bottom of the thin-layer chromatography plate. While, the conventional solid phase microextraction/gas chromatography-mass spectrometry analysis of this sample solution revealed only 62 compounds (including 35 perfume compounds), the four-piece approach resulted in 109 compounds (62 perfume compounds). Furthermore, the capability of thin-layer chromatography-Gas Analyzer approach to analyze the isomers in this complex sample was demonstrated.

6.
Analyst ; 145(20): 6668-6676, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33043910

RESUMEN

Chiral cyclic trilactams ((+)-1 and (-)-1) with C3 symmetry were investigated as liquid phase extraction materials of volatile compounds. Perfume samples, involving a range of chiral odor active terpenoids, were applied and each sample before and after the liquid phase extraction was analyzed by solid phase microextraction (SPME)-gas chromatography hyphenated with mass spectrometry. It was found that (+)-1 exhibited significantly higher enrichment factors for several terpenoids, while (-)-1 did not. The mode of interactions between each enantiomer and l-menthol and Kharismal (methyl dihydrojasmonate) was further investigated by molecular dynamics (MD) simulations and theoretical density functional theory (DFT) calculations, showing the favorable interactions of enriched substrates with (+)-1 through noncovalent interactions, either hydrogen bonds or electrostatic interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA