Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(15): 24194-24202, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475252

RESUMEN

Magneto-optical imaging of quantized magnetic flux tubes in superconductors - Abrikosov vortices - is based on Faraday rotation of light polarization within a magneto-optical indicator placed on top of the superconductor. Due to severe aberrations induced by the thick indicator substrate, the spatial resolution of vortices is usually well beyond the optical diffraction limit. Using a high refractive index solid immersion lens placed onto the indicator garnet substrate, we demonstrate wide field optical imaging of single flux quanta in a Niobium film with a resolution better than 600 nm and sub-second acquisition periods, paving the way to high-precision and fast vortex manipulation. Vectorial field simulations are also performed to reproduce and optimize the experimental features of vortex images.

2.
Nano Lett ; 20(9): 6488-6493, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32787167

RESUMEN

Superconductors can host quantized magnetic flux tubes surrounded by supercurrents, called Abrikosov vortices. Vortex penetration into a superconducting film is usually limited to its edges and triggered by external magnetic fields or local electrical currents. With a view to novel research directions in quantum computation, the possibility to generate and control single flux quanta in situ is thus challenging. We introduce a far-field optical method to sculpt the magnetic flux or generate permanent single vortices at any desired position in a superconductor. It is based on a fast quench following the absorption of a tightly focused laser pulse that locally heats the superconductor above its critical temperature. We achieve ex-nihilo creation of a single vortex pinned at the center of the hotspot, while its counterpart opposite flux is trapped tens of micrometers away at its boundaries. Our method paves the way to optical operation of Josephson transport with single flux quanta.

3.
Sci Rep ; 9(1): 10540, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332245

RESUMEN

Graphene's giant nonlinear optical response along with its integrability has made it a vaunted material for on-chip photonics. Despite a multitude of studies confirming its strong nonlinearity, there is a lack of reports examining the fundamental processes that govern the response. Addressing this gap in knowledge we analyse the role of experimental parameters by systematically measuring the near-infrared spectral dependence, the sub-picosecond temporal evolution and pulse-width dependence of the effective Kerr coefficient (n2,eff) of graphene in hundreds of femtosecond regime. The spectral dependence measured using the Z-scan technique is corroborated by a density matrix quantum theory formulation to extract a n2,eff ∝ λ2 dependence. The temporal evolution obtained using the time-resolved Z-scan measurement shows the nonlinearity peaking at zero delay time and relaxing on a time-scale of carrier relaxation. The dependence of the n2,eff on pulse duration is obtained by expanding the input pulse using a prism-pair set-up. Our results provide an avenue for controllable tunability of the nonlinear response in graphene, which is limited in silicon photonics.

4.
Nanotechnology ; 27(46): 462001, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27780158

RESUMEN

Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.

5.
J Phys Chem Lett ; 7(4): 715-21, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26840877

RESUMEN

The facile solution-processability of methylammonium lead halide (CH3NH3PbI3) perovskites has catalyzed the development of inexpensive, hybrid perovskite-based optoelectronics. It is apparent, though, that solution-processed CH3NH3PbI3 films possess local emission heterogeneities, stemming from electronic disorder in the material. Herein we investigate the spatially resolved emission properties of CH3NH3PbI3 thin films through detailed emission intensity versus excitation intensity measurements. These studies enable us to establish the existence of nonuniform trap density variations wherein regions of CH3NH3PbI3 films exhibit effective free carrier recombination while others exhibit emission dynamics strongly influenced by the presence of trap states. Such trap density variations lead to spatially varying emission quantum yields and correspondingly impact the performance of both methylammonium lead halide perovskite solar cells and other hybrid perovskite-based devices. Of additional note is that the observed spatial extent of the optical disorder extends over length scales greater than that of underlying crystalline domains, suggesting the existence of other factors, beyond grain boundary-related nonradiative recombination channels, which lead to significant intrafilm optical heterogeneities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA